簡易檢索 / 詳目顯示

研究生: 周元中
Chou, Yuan-Chung
論文名稱: 基於卡爾曼濾波器的輔助之四旋翼機建置SLAM地圖
Building SLAM Map with Kalman Filter Assisting for Quadcopter
指導教授: 賴維祥
Lai, Wei-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 民航研究所
Institute of Civil Aviation
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 76
中文關鍵詞: 無人機四旋翼SLAMHector SLAMScan MatchingEKF
外文關鍵詞: Drone, Quadcopter, SLAM, Hector SLAM, Scan Matching, EKF
相關次數: 點閱:116下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於自走車的SLAM建置地圖的普及化,本研究構想是想讓無人機也能達到該目標,讓機體搭配LiDAR能感測環境且建置地圖,該技術亦是一項新的趨勢。傳統上,若以無人機搭配LiDAR輔助,是用其雷射測距功能達到無人機的高度或側向的避障,但在本研究中,將以LiDAR建置SLAM平面地圖,所採用的演算方法為Hector SLAM,其運算核心是雷射掃描匹配的方法,實驗中搭載於四旋翼機進行室內地圖繪製。由於室內飛行並沒有GPS的定位輔助,故飛行的狀況會很不穩定,機身的俯仰、側傾、加速、減速都會造成LiDAR掃描面有重複疊圖的狀況或是測距的長度不準確,故本論文提出搭配使用卡爾曼濾波器的預測及估計應用於掃描匹配,以建出SLAM地圖。最後藉由掃描匹配的誤差分析,探討實驗的結果。

    Due to the extensive use of SLAM maps for autonomous cars, this idea of study presents 2D SLAM mapping construction on a quadcopter in the indoor environments. Traditionally, the application of Lidar for drones are often used for lateral and height collision avoidance. However, in this research, the implementation of LiDAR will be used for 2D map construction by quadcopter. The proposed method of SLAM is Hector SLAM algorithm, which is used by laser scanning matching method without any information of odometry. For large-scale indoor laser scan mapping, a challenging problem is that any vibration or motion resulting from drones, such as pitch, roll, acceleration and deceleration, will cause repeated overlapping maps or inaccurate distance and orientation measurement on the LiDAR scanning surface. Thus, this thesis proposes that the prediction and estimation using Kalman filter is applied to PIXHAWK IMU and assist LiDAR scan matching to build a SLAM map. Last, the results of the experiment will be discussed through the error analysis of scan matching.

    中文摘要 i 英文摘要 ii 誌謝 vi 目錄 viii 表目錄 xii 圖目錄 xiiii 符號表 xvii 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 3 1.3 研究目的 4 1.4 文獻回顧 5 1.5 論文架構 10 第二章 演算法介紹 12 2.1 SLAM 12 2.1.1 SLAM 基本介紹 12 2.1.2 雷射數據 14 2.1.3 里程計數據 15 2.2 Hector SLAM 15 2.2.1 柵格地圖 16 2.2.2 雷射掃描匹配 19 2.2.3 Hector SLAM座標轉換 20 2.2.4 Gazebo模擬 22 2.3 卡爾曼濾波 24 2.4 演算方法 28 2.4.1 四旋翼機的IMU參數 28 2.4.2 掃描匹配的觀察模型 29 第三章 實驗設備及流程介紹 34 3.1 實驗平台 34 3.1.1 Jetson Nano 35 3.1.2 LiDAR (RPLiDAR A1) 37 3.2 ROS機器人作業系統 40 3.3 飛行載具設備 43 3.3.1 旋翼機 43 3.3.2 動力配置 44 3.3.3 飛行控制版 46 3.3.4 遙控器與接收器 47 3.3.5 地面資料站 49 3.3.6 載具通訊方式 49 3.4 實驗方法 51 3.4.1 實驗流程圖 51 3.4.2 實驗前飛行速度與高度的決斷 52 3.4.3 實驗場域 60 第四章 實驗結果與分析 62 4.1 Hector SLAM地圖 62 4.1.1 無EKF輔助 62 4.1.2 有EKF輔助 64 4.1.3 RPiDAR取樣頻率 66 4.1.4 小結 67 4.2 誤差分析 70 第五章 結論與未來工作 72 5.1 結論 72 5.2 未來工作 73 參考文獻 74

    [1] F. Anton, F. Artyom, K. Kirill, "2D SLAM Quality Evaluation Methods," 21st Conference of Open Innovations Association (FRUCT), pp.120-126, 2017
    [2] M. Fallon, H. Johannsson, M. Kaess, and J. J. Leonard, “The mit stata center dataset,” The International Journal of Robotics Research, vol. 32, no. 14, pp.1695-1699, 2013
    [3] F. Jiménez, M. Clavijo and J. Juana, " LiDAR-based SLAM algorithm for indoor scenarios," VEHICULAR 2018 : The Seventh International Conference on Advances in Vehicular Systems, Technologies and Applications, pp.47-53, 2018
    [4] Zhexiong Shang, Zhigang Shen, "Real-time 3D Reconstruction on Construction Site using Visual SLAM and UAV, " ArXiv 2018, pp. 305-315, 2018
    [5] W. Hess, D. Kohler, H. Rapp, D. Andor, " Real-Time Loop Closure in 2D LIDAR SLAM, " 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, pp.1271-1278, 2016
    [6] Feng Lin, Fangchao Qi, "Research on the Hardware Structure Characteristics and EKF Filtering Algorithm of the Autopilot PIXHAWK," 2016 Sixth International Conference on Instrumentation & Measurement, Computer, Communication and Control (IMCCC), Harbin, pp.228-231, 2016
    [7] John J. Leonard, Hugh F. Durrant-Whyte, "Mobile Robot Localization by Tracking Geometric Beacons," IEEE Transactions on Robotics and Automation, Vol. 7, No.3, pp.376-382, 1991
    [8] R. Smith, M. Self, P. Cheesemans, "Estimating Uncertain Spatial Relationships in Robotics," Autonomous Robot Vehicles, pp.435-461, 1986
    [9] S. Riisgaard and Morten R. Blas, "SLAM for Dummies," pp.10-13, 2018.
    [10] Scanning Laser Range Finder URG-04LX-UG01 Specifications. https://www.hokuyoaut.jp/02sensor/07scanner/download/pdf/URG04LX_UG01_spec_en.pdf (accessed May 22, 2015.)
    [11] G. Welch and G. Bishop, An Introduction to the Kalman Filter, July 24, 2006.
    [12] 高翔、張濤, SLAM視覺十四講, 深智圖書出版社, 2019.
    [13] Nvidia Developer, https://developer.nvidia.com/
    [14] SLAMTEC, http://www.slamtec.com/en/lidar/
    [15] ROS wiki, https//wiki/ros.org/
    [16] Gazebo, http://gazebosim.org/
    [17] CSDN Forum, https://blog.csdn.net/
    [18] Alibaba, https://www.alibaba.com/
    [19] J. Zhang, and S. Singh, “LOAM: Lidar Odometry and Mapping in Real-time,” Robotics: Science and Systems, Berkeley, CA, USA, July 12-16, 2014.
    [20] D. Ronzoni, R. Olmi, C. Secchi and C. Fantuzzi, “AGV Global Localization Using Indistinguishable Artificial,” in Proceedings of IEEE International Conference on Robotics and Automation, Shanghai, China, May 9-13, 2011.
    [21] S. Saat, Muhammad S. Saealal, A.R. Wan Norhisyam and M.S. Farees Ezwan, “Hector SLAM 2D Mapping for Simultaneous Localization and Mapping,” Journal of Engineering and Applied Sciences, pp.5610-5615, 2019.

    下載圖示 校內:2023-01-31公開
    校外:2024-06-30公開
    QR CODE