| 研究生: |
陳旻鴻 Chen, Min-Hong |
|---|---|
| 論文名稱: |
穿孔式柱狀散熱鰭片最佳孔徑及柱體形狀之預測 The Estimation of Optimum Shape and Perforation Diameters for Pin Fin Heat Sink |
| 指導教授: |
黃正弘
Huang, Cheng-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 穿孔式柱狀散熱鰭片 、反算設計問題 、最佳化設計 |
| 外文關鍵詞: | pin fin heat sink, Levenberg-Marquardt Method, optimization design |
| 相關次數: | 點閱:122 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以文獻[18]為研究基礎,利用商業套裝軟體CFD-ACE+建立散熱鰭片模型,並透過拉凡格式法(Levenberg-Marquardt Method)最佳化散熱鰭片之外型參數,期望在不改變鰭片體積的狀況下,獲得最小的散熱鰭片底板平均溫度與環境溫度之溫差。
本研究以文獻[18]Design#3-1為設計基礎並將其延伸,探討四種不同外形設計,並使用使用反算設計問題預測最佳鰭片外型參數。案例一為各圓柱的直徑、穿孔直徑以及高度都相同,每一單根圓柱的體積皆相同,預測穿孔直徑,而圓柱的直徑以及高度由公式推算得知;案例二為鰭片穿孔直徑隨鰭片列數而改變,每一列單根圓柱的體積皆相同,預測各列的穿孔直徑,而各列圓柱的直徑以及高度由公式推算得知;案例三為鰭片穿孔直徑隨鰭片行數而改變,每一行單根圓柱的體積皆相同,預測各行穿孔直徑,而各行圓柱的直徑以及高度由公式推算得知;案例四為鰭片穿孔直徑隨穿孔位置改變,每一單根圓柱的體積皆相同,預測各穿孔位置的直徑,而圓柱的直徑以及高度由公式推算得知。以上案例設計目標皆為獲得最小的底板平均溫度與環境溫度之溫差,計算出最佳散熱效果的鰭片穿孔直徑以及柱體形狀。
結果顯示,散熱模組的溫差在最佳化之後確實能夠降低,最後委託工廠製造本散熱模組並實際進行實驗,利用紅外線熱像儀進行溫度量測,並且與CFD-ACE+ 模擬計算的鰭片表面溫度進行驗證,證明了模擬與實際的結果非常相近。
A three-dimensional inverse design problem is examined in this thesis using a general purpose commercial package (CFD-ACE+) and the Levenberg-Marquardt Method (LMM) to estimate the optimum perforation diameters and shape for perforated pin fins with different design variables.
Based on the literature [18], this study consists of four cases. The objective of this thesis is to find the best shape design with a fixed volume condition for minimizing the temperature difference between base plate averaged temperature and ambient temperature, ΔT. Each case has three shape parameters, the perforation diameter, the pin diameter, and the pin height in the optimization design. The numerical simulation results show that the temperature difference between base and the environment, ΔT, of the original design heat sink module can be further reduced in the optimum heat sink modules by considering pin height and pin diameter as the design variables.
Finally, the experiments are performed to show the validity of the present design results and the temperature distributions are very similar between the experimental and numerical data. Results show that the Levenberg-Marquardt Method (LMM) can help us to find the optimum heat sink design for the best heat dissipation efficiently.
1. E. M. Sparrow, J. W. Ramsey, C. A. C. Altemani “Experiments on In-line Pin Fin Arrays-and Performance Comparisons with Staggered Arrays” Transactions of the ASME, Vol. 102, pp. 44-50,1980.
2. M. Tahat, Z. H . Kodah, B. A. Jarrah, S. D. Probert “Heat transfers from pin-fin arrays experiencing forced convection” Applied Energy,Vol. 67, pp. 419-442, 2000.
3. D. Soodphakdee, M. Behnia, D. W. Copeland “A Comparison of Fin Geometries for Heatsinks in Laminar Forced Convection: Part I - Round, Elliptical, and Plate Fins in Staggered and In-Line Configurations” The International Journal of Microcircuits and Electronic Packaging, Vol. 24, pp. 1063-1674, 2001.
4. A. B. Dhumne, H. S. Farkade “Heat Transfer Analysis of Cylindrical Perforated Fins in Staggered Arrangement” International Journal of Innovative Technology and Exploring Engineering, Vol. 2, pp. 2278-3075, 2013.
5. M. R. Shaeri, M. Yaghoubi “Numerical analysis of turbulent convection heat transfer from an array of perforated fins” International Journal of Heat and Fluid Flow, Vol. 30, pp. 218-228, 2009.
6. S. B. Chin, J. J. Foo, Y. L. Lai, T. K. K. Yong “Forced convective heat transfer enhancement with perforated pin fins” Heat Mass Transfer, Vol. 49, pp. 1447-1458, 2013.
7. K. Park, D. H. Choi, K. S. Lee “Numerical Shape Optimization for High Performance of a Heat sink with Pin-Fins” Numerical Heat Transfer, Part A, Vol. 46, pp. 909-927, 2004.
8. Ambarish Maji, Dipankar Bhanja , Promod Kumar Patowari “Numerical investigation on heat transfer enhancement of heat sink using perforated pin fins with inline and staggered arrangement” Applied Thermal Engineering, Vol. 125, pp. 596-616, 2017.
9. Amer Al-Damook , N. Kapur , J.L. Summers , H.M. Thompson “An experimental and computational investigation of thermal air flows through perforated pin heat sinks” Applied Thermal Engineering, Vol. 89, pp. 365-376, 2015.
10. Assel Sakanova “Heat transfer enhancement of perforated pin heat sink in future aircraft applications” Applied Thermal Engineering, Vol. 124, pp. 315-326, 2017.
11. Cheng-Hung Huang , I-Cha Yuan , Herchang Ay “An experimental study in determining the local heat transfer coefficients for the plate finned-tube heat exchangers” International Journal of Heat and Mass Transfer, Vol. 52, pp. 4883-4893, 2009.
12. C. Bougriou , R. Bessaih, R. L. Gall, J. C. Solecki “Measurement of the temperature distribution on a circular plane fin by infrared thermography technique” Applied Thermal Engineering, Vol. 24, pp. 813-825, 2004.
13. E. R. Meinders, Th. H. van der Meer, K. Hanjalic, C. J. M. Lasance “Application of infrared thermography to the evaluation of local convective heat transfer on arrays of cubical protrusions” International Journal of Heat and Fluid Flow, Vol. 18, pp. 152-159, 1997.
14. C. H. Huang, J. J. Lu and H. Ay “A three-dimensional heat sink module design algorithm with experimental verification” International Journal of Heat and Mass Transfer, Vol.54, pp. 1482-1492, 2011.
15. D. M. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters” J. Soc. Indust. Appl. Math., Vol. 11, pp. 431-441, 1963.
16. CFD-ACE+ user’s manual, ESI-CFD Inc., 2016.
17. Cheng-Hung Huang, Yu-Hsiang Chen “An impingement heat sink module design problem in determining simultaneously the optimal non-uniform fin widths and heights” International Journal of Heat and Mass Transfer, Vol. 73, pp. 627-633, 2014.
18. Cheng-Hung Huang, Yu-Chen Liu a, Herchang Ay “The design of optimum perforation diameters for pin fin array for heat transfer enhancement” International Journal of Heat and Mass Transfer, Vol. 84, pp. 752-765, 2015.