| 研究生: |
林書弘 Lin, Shu-hung |
|---|---|
| 論文名稱: |
兩階段模擬最佳化探討太陽能電池製造商在特定允收條件下之選商與訂單分配之研究 Two-Phase Simulation-Optimization Given Customer Acceptance Requirements for Vendor Selection and Order Allocation- A Case Study of Solar Cell Manufacturer |
| 指導教授: |
楊大和
Yang, Taho |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 製造資訊與系統研究所 Institute of Manufacturing Information and Systems |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 模擬最佳化 、訂單分配 、不確定性決策 、實驗設計 |
| 外文關鍵詞: | Design of Experiment, Decision under uncertainty, Quality characteristic stochastic, Order allocation, Simulation-Optimization |
| 相關次數: | 點閱:129 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
太陽能是再生能源中成長最快速的一種。然而,太陽能產業目前面臨供大於求、顧客對於品質要求嚴苛等挑戰,使電池製造商在品質或是獲利方面皆接受嚴峻的挑戰。
太陽能電池的品質好壞常以電池的轉換效率作為判定之基礎。而太陽能電池具有以下兩種隨機性。在原料部分,各供應商所提供之晶片所產出之的轉換效率會有所不同。在晶片製造過程部分,使用不同的製程處方(recipe)則最終轉換效率亦不同。
電池成本結構中,購買晶片約占50%。而在電池的售價則是以轉換效率作為售價衡量標準,若每批電池有0.1-0.2%的轉換效率偏移,則導致售價差距US$0.0565。假設一筆訂單數量以10MW計,則轉換效率低於平均0.1%會至少損失US$56500。
因此,如何掌控原料端以及製程端的隨機性,藉此來降低原料成本並提升轉換效率,使公司能夠以最低成本來滿足顧客特定允收條件,是本研究之主要目的。
故本研究提出一使用兩階段模擬最佳化之方法。透過第一階段模擬最佳化來量化原料及製程對轉換效率之影響,並估計其機率分配參數。接著第二階段模擬最佳化則以第一階段模擬最佳化為基礎,並考量顧客允收條件下,求解下生產成本最小化的投料比例組合。最後,以現況之投料機制最為標竿進行比較,可發現兩階段模擬最佳化不論在任何情境之下,皆能以較低之成本來滿足顧客需求,且其改善幅度最少為15%。因此證明本文所提出之方法,能夠有效地來提高企業滿足顧客需求以及獲利之能力。
Green energy is the main focus in the world recently, in particular, solar energy is one of the rapid-growing renewable energy. However, the government’s protection policies lead to a supply-larger-than-demand situation in supply chains. As a result, the market clearing price drops dramatically. In addition, the customers’ requirements for quality and acceptance become more and more serious.
Due to a rapid change of environments and customer requirements the oversupply leads to price drop and high customer’s requirement. It becomes a challenging issue to generate high quality product with lower cost in solar cell manufacturing industry.
The quality of solar cell depends on the efficiency of conversion, which defines the ratio of transforming solar energy to electrical energy. Currently, the most popular product in the market is polycrystalline silicon solar cell, and its efficiency of conversion(EC) is between 16% and 18%. The higher the efficiency of conversion, the more power it can generate. In this field, the customer order is based on the number of Watt as the unit. Thus, the higher the productive efficiency of conversion, the less the cells we need to produce.
In particular, the main cost structure of solar cell presents the 48.57% for silicon wafer, and it’s around a half of total production cost. It reveals an opportunity of cost reduction for the gap between the production quantity and total Watt of the order. Thus, how to find a cost-effective way to give a tradeoff among production cost, the number of wafer release, and the number of Watt from customer orders is eager to answer.
In the other side, the production process of solar cell presents stochastic characteristics. Two sources contribute to a stochastic system: material and process. First, the material from different suppliers may present different purities of silicon, and then it will result in a different efficiency of conversion in final product. Second, the wafer passes through all the manufacturing process, the combination of recipes may significantly affect the efficiency of conversion.
Simulation model is an approach to evaluate the stochastic characteristics in a complicated system. Comparing with mathematical programming, the simulation optimization model could solve the problem and derive an approximate optimal solution efficiently through some meta-heuristic algorithms when a growth of problem complexity. Thus, simulation model is more useful and popular in practice.
Therefore, the study proposes a two-phase simulation optimization (SO) model to support order allocation of suppliers for cost reduction. First-phase SO quantifies the stochastic effects of efficiency of conversion affected by material (eg. silicon wafer) and process (eg. Recipe), and estimates the parameters of probability distribution with respect to wafer and process. Second-phase SO optimizes the portfolio cost of order allocation given customer requirements based on the result of first-phase SO.
And then, we comparing to the original portfolio decision method, the result show that our two-phase SO method had greater performance, and the improvement of cost almost 8.98%.
Thus, the study focuses on changing suppliers’ order allocation for cost reduction in the stochastic system of solar cell manufacturing and enhance the core competence.
工研院產業經濟與趨勢研究中心,民99,太陽能光電產業與市場趨勢,Available:http://www.coeng.ntut.edu.tw/ezfiles/24/.../pta_4494_9817278_63391.pdf
李家岩,民95,建構交貨不確定下廠商評選與訂單配置之最佳化模式,國立清華大學工業工程研究所,碩士論文。
李鉦慶,民95,以模擬為基礎求解多產品多供應商訂單分配問題-以IC設計公司為例,國立成功大學製造工程研究所,碩士論文。
拓墣產業研究所,民100,全球太陽能產業未來商機探討,拓墣科技股份有限公司,台北。
財團法人台灣綜合研究所,民101,因應全球競爭環境下提升我國太陽能光電產業優勢策略之研究,行政院經濟建設委員會,台北。
經濟部加工出口管理區,民100,工出口區推動太陽能產業發展策略,Available:http://www.epza.gov.tw/downloadfile_url.aspx?url=files/201212/c0128a7a-34d7-4e75-9a14-56b002270196.pdf&filename=%E6%8E%A8%E5%8B%95%E5%A4%AA%E9%99%BD%E8%83%BD%E7%94%A2%E6%A5%AD%E7%99%BC%E5%B1%95%E7%AD%96%E7%95%A5%E4%B9%8B%E7%A0%94%E7%A9%B6.pdf
經濟部能源局,民100,能源統計手冊,Available:http://web3.moeaboe.gov.tw/ECW/populace/content/SubMenu.aspx?menu_id=141
經濟部能源局,民101,國際能源情勢與我國能源政策,Available:https://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&ved=0CDsQFjAB&url=https%3A%2F%2F2k3dmz2.moea.gov.tw%2Fotweb%2F08_KNOWLEDGE%2FKNOWLEDGE.aspx%3Fserno%3D330&ei=am2nUfl_yc2TBcbEgPgO&usg=AFQjCNEitocMMBvWxmTsup8mxbQ8qbZmMg&sig2=Dun8Eabo477UlEEmJGzlTQ
鼎興電腦,民102,太陽能產業鏈,Available:http://www.dsc.com.tw/wb001838/E/E7-1.html
黎漢林,民93,供應鏈管理與決策: 最佳化方法之運用,儒林圖書公司,台北。
U.S. Energy Information Administration(E.I.A), .E.I.A., 2012. Annual Energy Outlook 2012, 2012, Available: http://www.eia.gov/forecasts/aeo/pdf/0383(2012).pdf
PVinsight, 2013, solar PV cell weekly spot price, Available:http://pvinsights.com
Banks, J., Carson, J.S., Nelson, B.L., and Nicol, D.M., 2010. Discrete-Event System Simulation, 5th ed, Prentice Hall, Upper Saddle River.
Ben-Tal, A., and Nemirovski, A., 2002, Robust optimization–methodology and applications, Mathematical Programming, 92 (3), 453-480.
Choy, K., Lee, W., and Lo, V., 2002, An intelligent supplier management tool for benchmarking suppliers in outsource manufacturing, Expert Systems with Applications, 22 (3), 213-224.
Dahel, N.-E., 2003, Vendor selection and order quantity allocation in volume discount environments, Supply Chain Management: An International Journal, 8 (4), 335-342.
Dantzig, G.B., 1955, Linear programming under uncertainty, Management Science, 1 (3-4), 197-206.
De Boer, L., Labro, E., and Morlacchi, P., 2001, A review of methods supporting supplier selection, European Journal of Purchasing and Supply Management, 7 (2), 75-89.
De Boer, L., Van der Wegen, L., and Telgen, J., 1998, Outranking methods in support of supplier selection, European Journal of Purchasing and Supply Management, 4(2-3), 109-118.
Faez, F., Ghodsypour, S., and O’brien, C., 2009, Vendor selection and order allocation using an integrated fuzzy case-based reasoning and mathematical programming model, International Journal of Production Economics, 121 (2), 395-408.
Glover, F., 1990, Tabu search: A tutorial. Interfaces, 20 (4), 74-94.
Glover, F., Kelly, J.P., and Laguna, M., 1996, New advances and applications of combining simulation and optimizationed, Proceedings of the 28th conference on Winter simulationIEEE Computer Society, New Orleans, LA, USA, 144-152.
Glover, F., and Laguna, M., 1997. Tabu Search, Springer.
Glover, F., Laguna, M., and Martí, R., 2000, Fundamentals of scatter search and path relinking, Control and cybernetics, 39 (3), 653-684.
Higle, J.L. and Wallace, S.W., 2003, Sensitivity analysis and uncertainty in linear programming, Interfaces, 33 (4), 53-60.
Jayaraman, V., Srivastava, R., and Benton, W., 1999, Supplier selection and order quantity allocation: a comprehensive model, Journal of Supply Chain Management, 35 (2), 50-58.
Kelton, W.D., Sadowski, R.P., and Sadowski, D.A., 2010. Simulation with ARENA, 5th edition ed., McGraw-Hill Higher Education, Boston.
Keskin, B.B., Melouk, S.H., and Meyer, I.L., 2010, A simulation-optimization approach for integrated sourcing and inventory decisions, Computers and Operations Research, 37 (9), 1648-1661.
Kumar, M., Vrat, P., and Shankar, R., 2004, A fuzzy goal programming approach for vendor selection problem in a supply chain, Computers & Industrial Engineering, 46 (1), 69-85.
Laguna, M., 1998, Applying robust optimization to capacity expansion of one location in telecommunications with demand uncertainty, Management Science, 44 (11-2), 101-110.
Matthyssens, P., and Van den Bulte, C., 1994, Getting closer and nicer: partnerships in the supply chain, Long Range Planning, 27 (1), 72-83.
McVean, J., 2000, The significance of risk definition on portfolio selectioned, SPE Annual Technical Conference and Exhibition.
Mafakheri, F., Breton, M., and Ghoniem, A., 2011, Supplier selection-order allocation: a two-stage multiple criteria dynamic programming approach, International Journal of Production Economics, 132 (1), 52-57.
Montgomery, D.C., 2008, Design and Analysis of Experiments, Wiley, New Jersey.
Mulvey, J.M., Vanderbei, R.J., and Zenios, S.A., 1995, Robust optimization of large-scale systems, Operations research, 43 (2), 264-281.
Pan, A.C., 1989, Allocation of order quantity among suppliers, Journal of Purchasing and Materials Management, 25 (3), 36-39.
Russell, R.S. and Taylor, B.W., 2003, Operations Management, third edition, Prentice Hall Upper Saddle River, NJ.
Sauer, J., Suelmann, G., and Appelrath, H.-J., 1998, Multi-site scheduling with fuzzy concepts, International Journal of Approximate Reasoning, 19 (1–2), 145-160.
Şenyiğit, E., 2013, Supplier selection and purchase problem for multi-echelon defective supply chain system with stochastic demand, Neural Computing and Applications, 22 (2), 403-415.
Simchi-Levi, D., Simchi-Levi, E., and Kaminsky, P., 1999, Designing and Managing the Supply Chain: Concepts, Strategies, and Cases, third edition, McGraw-Hill , United-States.
Timpe, C.H. and Kallrath, J., 2000, Optimal planning in large multi-site production networks, European Journal of Operational Research, 126 (2), 422-435.
Watson, K. and Polito, T., 2003, Comparison of DRP and TOC financial performance within a multi-product, multi-echelon physical distribution environment, International Journal of Production Research, 41 (4), 741-765.
Weber, C.A., Current, J.R., and Benton, W., 1991, Vendor selection criteria and methods, European Journal of Operational Research, 50 (1), 2-18.
Wu, J.-Z., and Chien, C.-F., 2008, Modeling strategic semiconductor assembly outsourcing decisions based on empirical settings, OR Spectrum, 30 (3), 401-430.
Yang, T., 2009, An evolutionary simulation–optimization approach in solving parallel-machine scheduling problems – A case study, Computers & Industrial Engineering, 56 (3), 1126-1136.
Yang, T., Fu, H.-P., and Yang, K.-Y., 2007, An evolutionary-simulation approach for the optimization of multi-constant work-in-process strategy—a case study, International Journal of Production Economics, 107 (1), 104-114.
Yang, T., Kuo, Y., and Chang, I., 2004, Tabu-search simulation optimization approach for flow-shop scheduling with multiple processors—a case study. International Journal of Production Research, 42 (19), 4015-4030.
Yang, T., Lin, H.-C., and Chen, M.-L., 2006, Metamodeling approach in solving the machine parameters optimization problem using neural network and genetic algorithms: a case study. Robotics and Computer-Integrated Manufacturing, 22 (4), 322-331.
Yang, T., and Tseng, L., 2002, Solving a multi-objective simulation model using a hybrid response surface method and lexicographical goal programming approach- a case study on integrated circuit ink-marking machines, Journal of the Operational Research Society, 53 (2), 211-221.
Zarandi, M.F., and Saghiri, S., Year. A comprehensive fuzzy multi-objective model for supplier selection processed, Fuzzy Systems, 2003, FUZZ'03. The 12th IEEE International Conference on IEEE, St Louis, USA, 368-373.