簡易檢索 / 詳目顯示

研究生: 莊家源
Zhuang, Gia-Yuan
論文名稱: 氧化鋅微米柱內激子極化子之色散關係:實驗與模擬
Exciton-polariton dispersion relation in ZnO microrod: Simulation and experiment
指導教授: 徐旭政
Hsu, Hsu-Cheng
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 69
中文關鍵詞: 氧化鋅微米柱激子極化子折射率激子極化子色散關係角度解析光激發光光譜
外文關鍵詞: ZnO microrod, exciton-polariton, refractive index, polariton dispersion relation, angle-resolved photoluminescence
相關次數: 點閱:57下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 寬能隙(3.37 eV)之Ⅱ-Ⅵ族半導體材料氧化鋅,具有較大之激子束縛能(~60 meV),此特性使激子能於室溫存在於氧化鋅中,並且氧化鋅之六角形微柱可以作為侷限光子之微共振腔結構。綜合上述兩個特性,激子與光子能夠於氧化鋅微奈米柱中發生強烈的交互作用,進而在室溫下產生激子極化子。但是若要將激子極化子等應用推廣至實際光電元件,我們必然需要完全了解氧化鋅微奈米柱之材料性質,其中一項最重要的材料性質為折射率,是不同激子極化子模態於氧化鋅內傳遞時應謹慎考慮的問題。
    因此我們在此論文中提供一種簡單的方式來獲得我們氧化鋅微米柱本質折射率。一般強耦合下之激子極化子色散情形常用半古典羅倫茲模型來描述,然而許多團隊會將背景折射率設定為定值,這會造成拉比分裂能量的誤判。因此我們進行羅倫茲模型的修正以符合實際情況之折射率。在可見光部分折射率我們參考其他團隊使用橢偏儀量測氧化鋅單晶塊材之結果,並對其以柯西色散公式擬合參數。在近能帶部分則利用耳語迴廊共振腔模態間距推算出該部分之折射率。以柯西色散公式帶入羅倫茲色散模型修正後,我們可以得到與激子極化子有關之參數,如拉比分裂能量與阻尼項等。最後我們可以由修正後之激子極化子色散公式得到消光係數與能量色散圖以外,還模擬激子極化子模態於角度解析光激發光光譜之色散曲線,其與實驗所量測之結果相當吻合。

    We modify the formula of ZnO polariton dispersion relation in a strong coupling regime to match the “real” refractive index of ZnO microrod. The ZnO polariton dispersion relation in a strong coupling regime is in the form of the Lorentz dispersion model. There are some problems when the formula applying to the general cases, such as the background permittivity is constant and the damping constant is neglected. After substituting the Cauchy dispersion equation into the Lorentz dispersion model, we can extract some parameters relating to exciton-polariton, such as exciton resonance energy, Rabi splitting energy, and damping energy. By the formula of modified ZnO polariton dispersion relation, we can obtain the extinction coefficient of ZnO microrod, the exciton-polariton energy-dispersion diagram. We can also confirm the detuning of each exciton-polariton whispering-gallery mode. Furthermore, we simulate the dispersion curve of exciton-polariton modes in angle-resolved photoluminescence. By the formula of modified ZnO polariton dispersion relation, it coincides well with the measured results.

    摘要 I Extended abstract II 致謝 VII 章節目錄 VIII 圖目錄 X 表目錄 XIII 章節一、序論 1.1前言 1 1.2文獻回顧 4 1.3實驗動機 9 章節二、實驗原理 2.1氧化鋅材料介紹 10 2.1.1物理性質介紹 10 2.1.2折射率介紹 11 2.1.3氧化鋅材料發光光譜介紹 12 2.1.4 氧化鋅中之激子介紹 13 2.2 微共振腔介紹 16 2.2.1 耳語迴廊共振腔介紹 17 2.2.2 氧化鋅內部共振腔介紹 17 2.2.3 共振腔模態與色散關係 21 2.3 光波導介紹 22 2.4 光與物質之交互作用 25 2.4.1 激子極化子 27 2.4.2氧化鋅微米柱於強耦合下之色散關係 29 章節三、樣品製備與實驗架設 3.1氧化鋅微米柱製備 31 3.1.1化學氣相沉積法 31 3.1.2氧化鋅微米柱製備 31 3.2 樣品分析 33 3.2.1場發射掃描式電子顯微鏡 33 3.2.2光學量測 33 3.2.2.1光激發發光 33 3.2.2.2空間解析微光激發光光譜量測 (Spatially resolved μ-PL) 34 3.2.2.3角度解析微光激發光光譜量測 (Angle-resolved μ-PL) 36 章節四、實驗結果與討論 4.1氧化鋅微米柱外貌與光學性質 39 4.1.1氧化鋅微米柱外貌 39 4.1.2氧化鋅光譜性質 40 4.2 近能帶折射率分析 41 4.2.1近能帶空間解析光激發光光譜 41 4.2.2 近能帶折射率推算 43 4.2.3不同共振腔模態推算之折射率差異 45 4.3 可見光折射率(柯西色散公式擬合) 46 4.4強耦合下之激子極化子色散公式修正 48 4.4.1修正之激子極化子色散公式 49 4.4.2折射率與消光係數 52 4.4.3激子極化子之色散關係圖 53 4.5角度解析光激發光光譜之色散曲線模擬 56 章節五、結論 64 章節六、未來展望 65 章節七、文獻引用 66

    1. Hopfield, J.J., THEORY OF THE CONTRIBUTION OF EXCITONS TO THE COMPLEX DIELECTRIC CONSTANT OF CRYSTALS. Physical Review Letters, 1958. 1(11): p. 427-428.
    2. Vahala, K.J., Optical microcavities. Nature, 2003. 424(6950): p. 839-846.
    3. Deng, H., et al., Condensation of semiconductor microcavity exciton polaritons. Science, 2002. 298(5591): p. 199-202.
    4. Lai, C.W., et al., Coherent zero-state and p-state in an exciton-polariton condensate array. Nature, 2007. 450(7169): p. 529-U8.
    5. Deng, H., H. Haug, and Y. Yamamoto, Exciton-polariton Bose-Einstein condensation. Reviews of Modern Physics, 2010. 82(2): p. 1489-1537.
    6. Anderson, M.H., et al., Observation of Bose-Einstein condensation in a dilute atomic vapor. science, 1995: p. 198-201.
    7. Davis, K.B., et al., Bose-Einstein condensation in a gas of sodium atoms. Physical review letters, 1995. 75(22): p. 3969.
    8. Pethick, C.J. and H. Smith, Bose–Einstein condensation in dilute gases. 2008: Cambridge university press.
    9. Bajoni, D., et al., Polariton laser using single micropillar GaAs-GaAlAs semiconductor cavities. Physical Review Letters, 2008. 100(4): p. 4.
    10. Azzini, S., et al., Ultra-low threshold polariton lasing in photonic crystal cavities. Applied Physics Letters, 2011. 99(11): p. 3.
    11. Deveaud-Plédran, B., Polaritronics in view. Nature, 2008. 453(7193): p. 297-298.
    12. Zhang, Z., et al., Exciton-polariton light-emitting diode based on a ZnO microwire. Optics Express, 2017. 25(15): p. 17375-17381.
    13. Tsintzos, S., et al., Room temperature GaAs exciton-polariton light emitting diode. Applied Physics Letters, 2009. 94(7): p. 071109.
    14. Zasedatelev, A.V., et al., A room-temperature organic polariton transistor. Nature Photonics, 2019. 13(6): p. 378-383.
    15. Christopoulos, S., et al., Room-temperature polariton lasing in semiconductor microcavities. Physical review letters, 2007. 98(12): p. 126405.
    16. Weisbuch, C., et al., Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Physical Review Letters, 1992. 69(23): p. 3314.
    17. Houdre, R., et al., MEASUREMENT OF CAVITY-POLARITON DISPERSION CURVE FROM ANGLE-RESOLVED PHOTOLUMINESCENCE EXPERIMENTS. Physical Review Letters, 1994. 73(15): p. 2043-2046.
    18. Savvidis, P., et al., Angle-resonant stimulated polariton amplifier. Physical review letters, 2000. 84(7): p. 1547.
    19. Stevenson, R., et al., Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities. Physical Review Letters, 2000. 85(17): p. 3680.
    20. Kasprzak, J., et al., Bose–Einstein condensation of exciton polaritons. Nature, 2006. 443(7110): p. 409-414.
    21. Lagoudakis, K.G., et al., Quantized vortices in an exciton–polariton condensate. Nature physics, 2008. 4(9): p. 706-710.
    22. Amo, A., et al., Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. Nature, 2009. 457(7227): p. 291-295.
    23. Shimada, R., et al., Cavity polaritons in ZnO-based hybrid microcavities. Applied Physics Letters, 2008. 92(1): p. 3.
    24. Chen, J.R., et al., Large vacuum Rabi splitting in ZnO-based hybrid microcavities observed at room temperature. Applied Physics Letters, 2009. 94(6): p. 3.
    25. Chichibu, S., et al., Dielectric Si O 2∕ Zr O 2 distributed Bragg reflectors for ZnO microcavities prepared by the reactive helicon-wave-excited-plasma sputtering method. Applied physics letters, 2006. 88(16): p. 161914.
    26. Lai, Y.Y., et al., Crossover from polariton lasing to exciton lasing in a strongly coupled ZnO microcavity. Scientific Reports, 2016. 6: p. 7.
    27. Lu, T.C., et al., Room temperature polariton lasing vs. photon lasing in a ZnO-based hybrid microcavity. Optics Express, 2012. 20(5): p. 5530-5537.
    28. Li, F., et al., From Excitonic to Photonic Polariton Condensate in a ZnO-Based Microcavity. Physical Review Letters, 2013. 110(19): p. 5.
    29. Duan, Q.Q., et al., Polariton lasing of quasi-whispering gallery modes in a ZnO microwire. Applied Physics Letters, 2013. 103(2): p. 3.
    30. Li, W.L., et al., Microphotoluminescence study of exciton polaritons guided in ZnO nanorods. Applied Physics Letters, 2009. 95(17): p. 3.
    31. Trichet, A., et al., One-dimensional ZnO exciton polaritons with negligible thermal broadening at room temperature. Physical Review B, 2011. 83(4): p. 4.
    32. Luo, S., et al., Exciton-polariton dynamics modulated by exciton-photon detuning in a ZnO microwire. Journal of Applied Physics, 2020. 127(2): p. 4.
    33. Nobis, T., et al., Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section. Physical Review Letters, 2004. 93(10): p. 4.
    34. Sun, L.X., et al., Quasi-whispering gallery modes of exciton-polaritons in a ZnO microrod. Optics Express, 2010. 18(15): p. 15371-15376.
    35. Xu, D., et al., Polariton lasing in a ZnO microwire above 450 K. Applied Physics Letters, 2014. 104(8): p. 082101.
    36. Kang, J.-W., et al., Room temperature polariton lasing in quantum heterostructure nanocavities. Science advances, 2019. 5(4): p. eaau9338.
    37. Zhu, L.Q., et al., Strain-engineered room temperature cavity polariton in ZnO whispering gallery microcavity. Applied Physics Letters, 2020. 116(2): p. 5.
    38. Ling, Y., et al., Room-temperature polariton waveguide effect in a ZnO microwire. Applied Physics Express, 2015. 8(3): p. 031102.
    39. Liao, L., et al., Propagation of a polariton condensate in a one-dimensional microwire at room temperature. Applied Physics Express, 2019. 12(5): p. 052009.
    40. Sun, F.F., et al., Spatially resolved surface-related exciton polariton dynamics in a single ZnO tetrapod. Solid State Communications, 2018. 270: p. 107-110.
    41. Niskanen, M., et al., Porphyrin adsorbed on the (101 [combining macron] 0) surface of the wurtzite structure of ZnO–conformation induced effects on the electron transfer characteristics. Physical Chemistry Chemical Physics, 2013. 15(40): p. 17408-17418.
    42. Schmidt-Grund, R., et al., Determination of the refractive index of single crystal bulk samples and micro-structures. Thin Solid Films, 2011. 519(9): p. 2777-2781.
    43. Lin, B., Z. Fu, and Y. Jia, Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Applied physics letters, 2001. 79(7): p. 943-945.
    44. Frenkel, J., On the transformation of light into heat in solids. I. Physical Review, 1931. 37(1): p. 17.
    45. Bohr, N., XXXVII. On the constitution of atoms and molecules. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1913. 26(153): p. 476-502.
    46. Laskowski, R. and N.E. Christensen, Ab initio calculation of excitons in ZnO. Physical Review B, 2006. 73(4): p. 045201.
    47. Elliott, R., Intensity of optical absorption by excitons. Physical Review, 1957. 108(6): p. 1384.
    48. Sun, L.X., et al., Direct observation of whispering gallery mode polaritons and their dispersion in a ZnO tapered microcavity. Physical Review Letters, 2008. 100(15): p. 4.
    49. Rayleigh, L., CXII. The problem of the whispering gallery. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1910. 20(120): p. 1001-1004.
    50. Wiersig, J., Hexagonal dielectric resonators and microcrystal lasers. Physical Review A, 2003. 67(2): p. 023807.
    51. Dai, J., et al., Whispering gallery-mode lasing in ZnO microrods at room temperature. Applied Physics Letters, 2009. 95(24): p. 3.
    52. Duan, X., et al., Single-nanowire electrically driven lasers. Nature, 2003. 421(6920): p. 241-245.
    53. Saleh, B.E.A. and M.C. Teich, Fundamentals of Photonics. 2013: Wiley.
    54. Gérard, J., et al., Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity. Physical review letters, 1998. 81(5): p. 1110.
    55. Sturm, C., et al., Exciton–polaritons in a ZnO-based microcavity: polarization dependence and nonlinear occupation. New Journal of Physics, 2011. 13(3): p. 033014.
    56. van Vugt, L.K., et al., Exciton polaritons confined in a ZnO nanowire cavity. Physical Review Letters, 2006. 97(14): p. 4.
    57. Lagois, J., DEPTH-DEPENDENT EIGENENERGIES AND DAMPING OF EXCITONIC POLARITONS NEAR A SEMICONDUCTOR SURFACE. Physical Review B, 1981. 23(10): p. 5511-5520.
    58. Chen, Y.D., et al., Emission spectra of hexagonal zinc oxide microrods due to resonant modes. Journal of the Optical Society of America B-Optical Physics, 2018. 35(9): p. 2228-2236.

    下載圖示 校內:2025-07-31公開
    校外:2025-07-31公開
    QR CODE