| 研究生: |
邱家軍 Chiu, Jia-jyun |
|---|---|
| 論文名稱: |
從分子動力學模擬的觀點探討蜂毒肽Mastoparan-B分子如何與類細胞膜環境相互作用 How Does the Wasp Venom Mastoparan-B Interact with Membrane Mimicing Environment: An Aspect from Molecular Dynamics Simulation |
| 指導教授: |
黃吉川
Hwang, Chi-Chuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 28 |
| 中文關鍵詞: | 分子動力學 、蜂毒肽 |
| 外文關鍵詞: | mastoparan, molecular dynamics |
| 相關次數: | 點閱:102 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
黑腹胡蜂乃是國內最危險、最具攻擊性的蜂種之一,其蜂毒經廣泛的研究之後,發現極具醫藥價值。黑腹胡蜂的蜂毒中,最主要的一種成分就是Mastoparan B(簡稱MP-B)。MP-B的功能非常多樣,像是與A2、C磷脂酶的活化、溶血作用、組織胺的釋放及活化G蛋白等。MP-B是一種由14個胺基酸(LKLKSIVSWAKKVL-CONH2)所組成且帶正電的多肽類分子,可形成具二向性(amphiphilic)的α-螺旋構形,一面呈疏水性,另一面呈親水性。根據前人的研究指出,MP-B在水中其結構會呈現相當的不穩定性,在三氟乙醇(TFE)與水的混合溶液中則會相當穩定呈現α-螺旋的構形。由於大多數關於結構上的實驗,僅限於對於MP-B接在細胞膜上時所呈現之構形的探討,對於MP-B與細胞膜之間相互作用的描述相當缺乏,因此吾人希望透過分子動力學模擬的研究方法,嘗試著先模擬MP-B在類細胞膜環境-TFE溶液中的行為,以探究這當中的機制。根據30奈秒的模擬過程顯示,單一MP-B分子在純TFE溶液環境的不穩定性,很有可能是提供MP-B分子得以溶解細胞膜的重要因素。
In Taiwan, the black-bellied hornet (Vespa basalis) is certainly the most dangerous and aggressive one in all species of vespine wasp. It has been found that its venom possesses important medicinal values by diversely researches. Mastoparan B (MP-B) is the major component of venom of Vespa basalis, which has shown various functions, such as activation of phospholipase A2 and C, erythrocyte lysis, histamine release, and activation of G-proteins. MP-B is a kind of cationic tetradecapeptide, which can form amphiphilic α-helix with hydrophilic residues on one side and hydrophobic ones on the other side. According to former researches, MP-Bs are random coil in aqueous solution and adopt α-helix conformation in the presence of trifluoroethanol (TFE). Notwithstanding so many research works about the relationship of structure-function of MP-B, mainly about the conformation of MP-B's binding to membrane, the detailed dynamical informations of MP-B in membrane-like environment and interactions of MP-B with membrane are still poor. Therefore, I tried to simulate MP-B in TFE/water mixtures by molecular dynamics to insight into the mechanism of membrane-perturbation of MP-B. My 30ns simulation have shown that the unstability of MP-B in high concentration of TFE/water mixtures may be a critical factor in the interaction of MP-B with membrane.
[1]Higashijima, T., Wakamatsu, K., Takemitsu, M., Fujino, M., Nakajima, T., Miyazawa, T., "Conformational change of mastoparan from wasp venom on binding with phospholipid membrane", FEBS Lett, 152(2):227-30, 1983.
[2]Nakajima, T. Handbook of Natural Toxins (Tu, A.T., ed.) Vol. 2, Marcel Dekker, New York, pp109-113, 1984.
[3]Katsu, T., Kuroko, M., Morikawa, T., Sanchika, K., Yamanaka, H., Shinoda, S., Fujita, Y., "Interaction of wasp venom mastoparan with biomembranes", Biochim Biophys Acta, 1027(2):185-90, 1990.
[4]Higashijima, T., Ross, E. M., "Mapping of the mastoparan-binding site on G proteins. Cross-linking of [125I-Tyr3,Cys11]mastoparan to Go", J Biol Chem, 266(19):12655-61, 1991.
[5]McDowell, L., Sanyal, G., Prendergast, F. G., "Probable role of amphiphilicity in the binding of mastoparan to calmodulin", Biochemistry, 24(12):2979-84, 1985.
[6]Kanagy, N. L., Webb, R. C., "Enhanced vascular reactivity to mastoparan, a G protein activator, in genetically hypertensive rats", Hypertension, 23(6 Pt 2):946-50, 1994.
[7]Sukumar, M., Higashijima, T., "G protein-bound conformation of mastoparan-X", a receptor-mimetic peptide, J Biol Chem, 267(30):21421-4, 1992.
[8]Higashijima, T., Uzu, S., Nakajima, T., Ross, E. M., "Mastoparan, a peptide toxin from wasp venom, mimics receptors by activating GTP-binding regulatory proteins (G proteins)", J Biol Chem, 263(14):6491-4, 1988.
[9]Hoshino, M., Goto, Y., "Perchlorate-induced formation of the alpha-helical structure of mastoparan", J Biochem (Tokyo), 116(4):910-5, 1994.
[10]Higashijima, T., Burnier, J. and Ross, E. M., "Regulation of Gi and Go by mastoparan, related amphiphilic peptides, and hydrophobic amines. Mechanism and structural determinants of activity", J Biol Chem, 265(24):14176-86, 1990.
[11]Wakamatsu, K., Okada, A., Miyazawa, T., Ohya, M., Higashijima, T., "Membrane-bound conformation of mastoparan-X, a G-protein-activating peptide", Biochemistry, 31(24):5654-60, 1992.
[12]Yu, H. M., Wu, T. M., Chen, S. T., Ho, C. L., Her, G. R., Wang, K. T., "Mastoparan B, synthesis and its physical and biological properties", Biochem Mol Biol Int, 29(2):241-6,1993.
[13]Ho, C. L., Hwang, L. L., "Structure and biological activities of a new mastoparan isolated from the venom of the hornet Vespa basalis", Biochem J, 274 ( Pt 2):453-6, 1991.
[14]Ho, C. L., Hwang, L. L., Lin, Y. L., Chen, C. T., Yu, H. M., Wang, K. T., "Cardiovascular effects of mastoparan B and its structural requirements", Eur J Pharmacol, 259(3):259-64, 1994.
[15]Ho, C. L., Lin, Y. L., Chen, W. C., Yu, H. M., Wang, K. T., Hwang, L. L., Chen, C. T., "Immunogenicity of mastoparan B, a cationic tetradecapeptide isolated from the hornet (Vespa basalis) venom, and its structural requirements", Toxicon, 33(11):1443-51, 1995.
[16]Ho, C. L., Lin, Y. L., Chen, W. C., Hwang, L. L., Yu, H. M., Wang, K. T., "Structural requirements for the edema-inducing and hemolytic activities of mastoparan B isolated from the hornet (Vespa basalis) venom", Toxicon, 34(9):1027-35, 1996.
[17]Ho, C. L., Shih, Y. P., Wang, K. T., Yu, H. M., "Enhancing the hypotensive effect and diminishing the cytolytic activity of hornet mastoparan B by D-amino acid substitution", Toxicon, 39(10):1561-6, 2001.
[18]Lee, S. Y., Park, N. G., Choi, M. U., "Effects of mastoparan B and its analogs on the phospholipase D activity in L1210 cells", FEBS Lett, 432(1-2):50-4, 1998.
[19]Yu, K., Kang, S., Park, N., Shin, J., Kim, Y., "Relationship between the tertiary structures of mastoparan B and its analogs and their lytic activities studied by NMR spectroscopy", J Pept Res, 55(1):51-62, 2000.
[20]Park, N. G., Yamato, Y., Lee, S., Sugihara, G., "Interaction of mastoparan-B from venom of a hornet in Taiwan with phospholipid bilayers and its antimicrobial activity", Biopolymers, 36(6):793-801, 1995.
[21]Yu, K., Kang, S., Kim, S. D., Ryu, P. D., Kim, Y., "Interactions between mastoparan B and the membrane studied by 1H NMR spectroscopy", J Biomol Struct Dyn, 18(4):595-606, 2001.
[22]Fujita, K., Kimura, S., Imanishi, Y., "Self-assembly of mastoparan X derivative having fluorescence probe in lipid bilayer membrane", Biochim Biophys Acta, 1195(1):157-63, 1994.
[23]Seigneuret, M., Levy, D., "A high-resolution 1H NMR approach for structure determination of membrane peptides and proteins in non-deuterated detergent: application to mastoparan X solubilized in n-octylglucoside", J Biomol NMR, 5(4):345-52, 1995.
[24]Chuang, C. C., Huang, W. C., Yu, H. M., Wang, K. T., Wu, S. H., "Conformation of Vespa basalis mastoparan-B in trifluoroethanol-containing aqueous solution", Biochim Biophys Acta, 1292(1):1-8, 1996.
[25]Matsuzaki, K., Yoneyama, S., Murase, O., Miyajima, K., "Transbilayer transport of ions and lipids coupled with mastoparan X translocation", Biochemistry, 35(25):8450-6, 1996.
[26]Hellmann, N., Schwarz, G., "Peptide-liposome association. A critical examination with mastoparan-X", Biochim Biophys Acta, 1369(2):267-77, 1998.
[27]Konno, K., Hisada, M., Naoki, H., Itagaki, Y., Kawai, N., Miwa, A., Yasuhara, T., Morimoto, Y., Nakata, Y., "Structure and biological activities of eumenine mastoparan-AF (EMP-AF), a new mast cell degranulating peptide in the venom of the solitary wasp", Toxicon, 38(11):1505-15, 2000.
[28]Whiles, J. A., Brasseur, R., Glover, K. J., Melacini, G., Komives, E. A., Vold, R. R., "Orientation and effects of mastoparan X on phospholipid bicelles", Biophys J, 80(1):280-93, 2001.
[29]Hori, Y., Demura, M., Iwadate, M., Ulrich, A. S., Niidome, T., Aoyagi, H., Asakura, T., "Interaction of mastoparan with membranes studied by 1H-NMR spectroscopy in detergent micelles and by solid-state 2H-NMR and 15N-NMR spectroscopy in oriented lipid bilayers", Eur J Biochem, 268(2):302-9, 2001.
[30]Schwarz, G., Reiter, R., "Negative cooperativity and aggregation in biphasic binding of mastoparan X peptide to membranes with acidic lipids", Biophys Chem, 90(3):269-77, 2001.
[31]Chahdi, A., Choi, W. S., Kim, Y. M., Beaven, M. A., "Mastoparan selectively activates phospholipase D2 in cell membranes", J Biol Chem, 278(14):12039-45, 2003.
[32]Fujiwara, T., Todokoro, Y., Yanagishita, H., Tawarayama, M., Kohno, T., Wakamatsu, K., Akutsu, H., "Signal assignments and chemical-shift structural analysis of uniformly 13C, 15N-labeled peptide, mastoparan-X, by multidimensional solid-state NMR under magic-angle spinning", J Biomol NMR, 28(4):311-25, 2004.
[33]Todokoro, Y., Yumen, I., Fukushima, K., Kang, S. W. , Park, J. S., Kohno, T.,Wakamatsu, K., Akutsu, H., Fujiwara, T., "Structure of tightly membrane-bound mastoparan-X, a G-protein-activating peptide, determined by solid-state NMR", Biophys J, 91(4):1368-79, 2006.
[34]Povey, J. F., Smales, C. M. Hassard, S. J. Howard, M. J., "Comparison of the effects of 2,2,2-trifluoroethanol on peptide and protein structure and function", J Struct Biol, 157(2):329-38, 2007
[35]Bodkin, M. J., Goodfellow, J. M., "Hydrophobic solvation in aqueous trifluoroethanol solution", Biopolymers, 39(1):43-50, 1996.