| 研究生: |
陳鋺菁 Chen, Wang-Ching |
|---|---|
| 論文名稱: |
核糖蛋白L5及螢光蛋白與其調節因子的研究 Study on the ribosomal protein L5 and fluorescent protein with its regulatory factors |
| 指導教授: |
張敏政
Chang, Ming-Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學研究所 Department of Biochemistry |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 螢光蛋白 、核糖蛋白L5 |
| 外文關鍵詞: | ribosomal protein L5, fluorescent protein |
| 相關次數: | 點閱:132 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
核糖蛋白L5 (ribosomal protein L5)大小約為34kDa,是組成真核細胞核糖體60S次單位的一員,L5主要負責攜帶5S ribosomal RNA (5S rRNA) 及其在細胞核內外的運送。L5除了具有運送5S rRNA的功能外,亦被指出能和細胞內的一些蛋白交互作用,如:casein kinase Ⅱ、typeΙphosphatase及mdm2-p53,過去的研究報告指出RPA2的磷酸化會造成原本結合在RPA1上的p53被釋放出來,又L5被發現會與mdm2和mdm2-p53複合體交互作用,且學長發現當UV照射細胞時,磷酸化的replication protein A2(RPA2)會與L5形成一個複合體,於是我們推測在一般狀況下,L5可能與p53結合,當UV照射細胞後,L5離開p53,使得p53因此活化,而進行p53-dependent checkpoint control。因此我們利用TNT Quick Coupled Transcription/Translation Systems與免疫沉澱法(immunoprecipitation)來偵測L5與p53蛋白是否有直接的交互作用,然而從實驗結果中我們並沒有看到L5與p53有直接地交互作用。且為了看經UV照射後L5與p53結合的關係,我們以50J/m2 的UV 照射細胞,經不同時間點收細胞以便進行西方墨點法及免疫沉澱法來看其p53、mdm2及L5的變化,進而了解它們的關係。由其結果顯示,當UV照射細胞後2小時,p53就會有明顯的增加,而mdm2卻要在4小時後才會消失,於是我們認為當UV照射細胞後2小時p53的增加,有一部分除了來自於原本與mdm2結合的p53被釋放出來的以外,另一部分可能是從與另一個蛋白結合中被釋放出來的p53。
創傷弧菌(Vibrio vulnificus)CKM1菌株的藍色螢光基因(bfpvv)其轉譯的藍色螢光蛋白(BFPVv)可經由長波UV燈照射而發出顯著的藍色螢光,且在bfpvv 5’端上游發現其調節基因,bfpvvR,此調節蛋白屬Lys family調節蛋白的一員。純化的BFPVvR蛋白可與bfpvv 5’端上游區域(即bfpvvR 3’端下游區域)產生結合,且我們發現BFPVv蛋白的表現量在bfpvvR mutant URD101內比wild type CKM-1還高,這意謂著BFPVvR可能是扮演著一調節者的角色來調控bfpvv 基因的表現。為了進一步探討BFPVvR蛋白如何調控BFPVv,於是我們利用primer extension analysis來找出其transcriptional start site。由結果得知bfpvv mRNA在轉譯起始點上游88個氮鹼基的位置開始轉錄。且為了進一歩確認BFPVvR是否扮演著一負調節者的角色來調控bfpvv gene的表現,於是我們將含有bfpvv的promoter 融合GST並構築在pBR322質體(PG/ pBR322),然後觀察GST在CKM-1(PG/ pBR322)及URD101(PG/ pBR322)內的表現,由結果發現GST蛋白在URD101的表現量比在CKM-1來得高,於是我們初步推測BFPVvR是扮演著一負調節者的角色來調控bfpvv gene的表現。
Ribosomal protein L5 (L5) is a 34KDa large subunit protein of 60S ribosome. L5 is known to bind specifically to 5S rRNA and is involved in nucleocytoplasmic transport of this rRNA. In addition to its 5S rRNA transport activity, L5 has also been shown to bind to other cellular proteins that participate in various intracellular transport pathways. For example, L5 interacts with the β subunit of casein kinase Ⅱ (CKⅡβ), typeⅠprotein phosphatase and mdm2-p53. Previous studies indicated that phosphorylation of replication protein A2 (RPA2) prevented the association of RPA with p53, and L5 was associated with mdm2 and mdm2-p53 complexes. In previous studies, we discovered that L5 interacted with hyperphosphorylated form but not hypophorylated form of RPA2 when cells were irradiated with UV. This raises an interesting possibility that L5 may be directly associated with p53 in unirradiated cells, and upon UV irradiation, L5 releases the bound p53, thus transducing the damage signal and activating the p53-dependent checkpoint control. In this study, TNT® Quick Coupled Transcription / Translation Systems and immunoprecipitation were performed to investigate whether L5 directly interact with p53 or not. The results of our primary data indicated that L5 associate with, but does not directly interact with p53. To test the effect of UV radiation on L5 associate with p53, cell lysates were prepared at different times after UV irradiation at 50J/m2. Western blot analysis and immunoprecipitation were performed. The results showed that p53 accumulated at 2 hr, but mdm2 disappeared at 4 hr after UV radiation. Thus, we thought that about half of p53 accumulation may be not released from p53-mdm2 complex when UV radiation. It may be released from the other protein.
In our preliminary studies, the gene, bfpvv, encoding a blue fluorescent protein (BFPVv) has been cloned from Vibrio vulnificus CKM-1. E. coli XL1B. containing bfpvv exhibited blue fluorescence phenotype when excited by long-wave UV light. Sequence analysis of the upstream region of the bfpvv gene revealed a gene, bfpvvR, is transcribed divergently from the bfpvv and its putative amino acid sequence was similar to the LysR family of transcriptional regulators. A DNA mobility shift assay showed the binding of purified BFPVvR to the bfpvvR-bfpvv intergenic promoter region. We also found that the expression of BFPVv in the bfpvvR mutant URD101 significantly increased compared to wild type CKM-1, indicating that BFPVvR may be a repressor for the bfpvv gene. To understand how BFPVvR regulates BFPVv, in this study, a primer extension analysis was performed to determine transcriptional start site. The results showed that the transcriptional start site of bfpvv mRNA was at the position -88 relative to the translational start site. To confirm that BFPVvR is a repressor for the expression of the bfpvv, a Pbfpvv-gst fusion was constructed on plasmid PG/pBR322, and the expression of gst in wild type strain containing PG/pBR322 and in URD101 containing PG/pBR322 were examined. The results revealed that the expression of GST in the URD101(PG/pBR322) significantly increased compared to those in wild type CKM-1(PG/pBR322), indicating that BFPVvR is a repressor for the expression of the bfpvv.
1. Abramova N. A., Russell J., Botchan M., Li R. Interaction between replication protein A and p53 is disrupted after UV damage in a DNA repair-dependent manner. Proc. Natl. Acad. Sci. USA. 94, 7186-7191, 1997.
2. Bassler B. L., Greenberg E. P., Stevens A. M. Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi. J Bacteriol. 179, 4043-4045, 1997.
3. Belas R, Mileham A, Cohn D, Hilman M, Simon M, Silverman M. Bacterial bioluminescence: isolation and expression of the luciferase genes from Vibrio harveyi. Science. 218, 791-793, 1982.
4. Biggin M. D., Gibson T. J., Hong G. F. Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination. Proc Natl Acad Sci U S A. 80, 3963-3965, 1983.
5. Chien C. T., Bartel P. L., Sternglanz R., Fields S. The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc Natl Acad Sci U S A. 88, 9578-9582, 1991.
6. Chomczynski P. Solubilization in formamide protects RNA from degradation. Nucleic Acids Res. 20, 3791-3792, 1992.
7. Chuang Y.C., Chang T.M., Chang M.C. Cloning and characterization of the gene (empV) encoding extracellular metalloprotease from Vibrio vulnificus. Gene. 189, 163-168, 1997.
8. Engebrecht J., Nealson K., Silverman M. Bacterial bioluminescence: isolation and genetic analysis of functions from Vibrio fischeri. Cell. 32, 773-781, 1983.
9. Fields S. and Song O. A novel genetic system to detect protein-protein interactions. Nature. 340, 245-246, 1989.
10. Filhol O., Baudier J., Delphin C., Loue-Mackenbach P., Chambaz E. M., Cochet C. Casein kinase II and the tumor suppressor protein p53 associate in a molecular complex that is negatively regulated upon p53 phosphorylation. J Biol Chem. 267, 20577-20583, 1992.
11. Fischer U., Meyer S., Teufel M., Heckel C., Luhrmann R., Rautmann G. Evedence that HIV-1 Rev directly promotes the nuclear export of unspliced RNA. EMBO J. 13, 4105-4112, 1994.
12. Freedman D. A., Levine A. J. Nuclear expot is require for degradation of endogenous p53 by mdm2 and human papillomavirus E6. Mol. Cell Biol. 18, 7288-7293, 1998.
13. Henikoff S., Haughn G. W., Calvo J. M., Wallace J. C. A large family of bacterial activator proteins. Proc Natl Acad Sci U S A. 85, 6602-6606, 1988.
14. Hirano K., Ito M., Hartshorne D.J. Interaction of the ribosomal protein, L5, with protein phosphatase type 1. J. Biol. Chem. 270, 19786-19790, 1995.
15. Illarionov B., Illarionova V., Lee J., van Dongen W., Vervoort J. Expression and properties of the recombinant lumazine (riboflavin) protein from Photobacterium leiognathi. Biochim Biophys Acta. 1201, 251-258, 1994.
16. Kim J. M., Cha J. Y., Marshak D. R., Bae Y. S. Interaction of the βsubunit of casein kinase Ⅱ with the ribosomal protein L5. Biochem. Biophys. Res. Commun., 226, 180-186, 1996.
17. Lakin N. D. and Jackson S. P. Regulation of p53 in response to DNA damage. Oncogene. 18, 7644-55, 1999.
18. Lehrach H., Diamond D., Wozney J. M., Boedtker H. RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical reexamination. Biochemistry. 16, 4743-4751, 1977.
19. Levine A. J. p53, the cellular gatekeeper for growth and division. Cell. 88, 323-331, 1997.
20. Lozano G. and Montes de Oca Luna R. MDM2 function. Biochim Biophys Acta. 1377, M55-M59, 1998.
21. Marechal V., Elenbaas B., Piette J., Nicolas J. C., Levine A. J. The ribosomal L5 protein is associated with mdm-2 and mdm-2-p53 complexes. Mol. Cell Biol. 14, 7414-7420, 1994.
22. McDougald D., Simpson L. M., Oliver J. D., Hudson M. Transformation of vibrio vulnificus by electroporation. Curren. Microbiol. 28, 289-291, 1994.
23. Meighen E. A. Molecular biology of bacterial bioluminescence. Microbiol Rev. 55, 123-142, 1991.
24. Momand J., Zambetti G. P., Olson D. C., George D., Levine A. J. The mdm2 oncogene product forms a complex with the p53 protein and inhibit p53 mediated transactivation. Cell. 69, 1237-1245, 1992.
25. Murdoch K. J. and Allison L. A. (1996) A role for ribosomal protein L5 in the nuclear import of 5S rRNA in Xenopus oocytes. Exp.Cell Res. 227, 332-343.
26. Nealson K. H. and Hastings J. W. Bacterial bioluminescence: its control and ecological significance. Microbiol. Rev. 43, 496-518, 1979.
27. Oliner J. D., Pietenpol J.A., Thiagalingam S., Gyuris J., Kinzler K. W., Vogelstein B. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature. 362, 857-860, 1993.
28. Oliver J. D., Roberts D. M., White V. K., Dry M. A., Simpson L. M. Bioluminescence in a strain of human pathogenic bacterium vibrio vulnificus. Appl Environ Microbiol. 52, 1209-1211, 1986.
29. Oren M. Regulation of the p53 tumor suppressor protein. J. Biol. Chem. 274, 36031-36034, 1999.
30. Park J. W. and Bae Y. S. Phosphorylation of ribosomal protein L5 by protein kinase CKII decreases its 5S rRNA binding activity. Biochem. Biophys. Res. Commun. 263, 475-481, 1999.
31. Pittman R. H., Andrews M. T., Setzer D. R. A feedback loop coupling 5SrRNA synthesis to accumulation of a ribosomal protein. J. Biol. Chem. 274, 33198-33201, 1999.
32. Rosorius O., Fries B., Stauber R. H., Hirschmann N., Bevec D., Hauber J. Human ribosomal protein L5 contains defined nuclear localization and export signals. J. Biol. Chem. 275, 12061-12068, 2000.
33. Roth J., Dobbelstein M., Freedman D. A., Shenk T., Levine A. J. Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein EMBO J. 17, 554-564, 1998.
34. Sambrook J. and Russell D. W. Molecular cloning: A Laboratory Manual, Third edition. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 7.75-7.81, 2001.
35. Sanger F. and Coulson, A. R. The use of thin acrylamide gels for DNA sequencing. FEBS Lett. 87, 107-110, 1978.
36. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 74, 5463-5467, 1977.
37. Schatz O., Oft M., Dascher C., Schebesta M., Rosorius O., Jaksche H., Dobrovnik M., Bevec D., Hauber J. Interaction of the HIV-1 rev cofactor eukaryotic initiation factor 5A with ribosomal protein L5. Proc. Natl. Acad. Sci. U S A. 95, 1607-1612, 1998.
38. Schell M.A. Molecular biology of the LysR family of transcriptional regulators. Annu. Rev. Microbiol. 47, 597-626, 1993.
39. Sionov R. V. and Haupt Y. The cellular response to p53: the decision between life and death. Oncogene. 18, 6145-6157, 1999.
40. Steitz J. A., Berg C., Hendrick J. P., La Branche-Chabot H., Metspalu A., Rinke J., Yario T. A 5S rRNA/L5 complex is a precursor to ribosome assembly in mammalian cells. J. Cell Biol. 106, 545-556, 1988.
41. Su J. H., Chuang Y. C., Tsai Y. C., Chang M. C. Cloning and characterization of a blue fluorescent protein from Vibrio vulnificus. Biochem Biophys Res Commun. 287, 359-365, 2001.
42. Tacket C. O., Brenner F., Blake P. A. Clinical features and epidemiological study of Vibrio vulnificus infections. J. Infect. Dis. 149, 558-561, 1984.
43. Tsien R.Y. The green fluorescent protein. Annu Rev Biochem. 67, 509-544, 1998 .
44. Wiederschain D., Gu J., Yuan Z. M. Evidence for a distinct inhibitory factor in the regulation of p53 functional activity. J. Biol. Chem. 276, 27999-28005, 2001.
45. Yang F., Moss L. G., Phillips G. N. Jr. The molecular structure of green fluorescent protein. Nat. Biotechnol. 14, 1246-1251, 1996.
46. Youvan D. C., and Michel-Beyerle M. E. Structure and fluorescence mechanism of GFP. Nat. Biotechnol. 14, 1219-1220, 1996.