| 研究生: |
蔡秀真 Tsai, Shiou-Jen |
|---|---|
| 論文名稱: |
缺氧誘導因子-1alpha調控CD151之探討 Regulation of CD151 (plate-endothelial tetraspanin antigen 3, PETA-3) by hypoxia inducible factor-1alpha |
| 指導教授: |
蔡少正
Tsai, Shaw-Jenq |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生理學研究所 Department of Physiology |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 缺氧 、大腸直腸癌 、缺氧誘導因子-1alpha 、CD151 |
| 外文關鍵詞: | HIF-1alpha, hypoxia, PETA-3, CD151, colon cancer |
| 相關次數: | 點閱:119 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
缺氧(hypoxia)的定義指細胞或組織處在低於正常氧氣分壓的狀態下。當細胞遭遇到缺氧時,會造成許多細胞功能的改變,而促使細胞能適應這樣的環境,其中這樣的機制大部分可透過缺氧誘導因子-1alpha來調控。當缺乏氧氣時,細胞內的缺氧誘導因子-1alpha會與缺氧誘導因子-1beta結合形成二聚體,並結合到受其調控基因的DNA缺氧反應序列上,進而調控下游基因的表現。在臨床的研究報導指出,缺氧會造成腫瘤組織對於癌症治療上具有抵抗性,並且在許多的癌症中均發現缺氧誘導因子-1alpha過量表現的情形。先前我們實驗室利用生物資訊的方式,分析文獻中已被報導證實受到缺氧誘導因子-1alpha調控基因的HRE及其周圍序列,進而建構一個較長序列HRE模型,將人類及小鼠所有基因的啟動子區域與此模型做比對,結果得到許多可能受到缺氧調控的基因,CD151為其中之一可能受到缺氧調控的基因,並且這樣的想法在目前的文獻中尚未被探討。CD151是一個穿越細胞膜的蛋白(屬於tetraspanin superfamily的成員之一),過去研究指出CD151在許多的細胞中均有表現(大部分於上皮細胞、內皮細胞及血小板等),而CD151在細胞中所扮演的角色被認為與細胞的附著和細胞移動的能力相關,並且被認為參與在許多癌症侵襲轉移的過程中。首先,我們由臨床的檢體中發現CD151於同一大腸直腸癌病人腫瘤組織中的表現量明顯低於正常組織,由於觀察到這樣的現象,因此在接下來的研究我想探討缺氧是否會影響CD151基因的表現?藉由給予大腸直腸癌細胞株化學性模擬缺氧處理後,CD151不論是在mRNA或是在蛋白質的表現量均有明顯的減少,並且這樣的處理也會造成CD151啟動子的活性下降。綜合以上結果,我們證實了缺氧會經由缺氧誘導因子-1alpha來調控CD151基因的表現,而這樣的現象使我們推測缺氧會造成腫瘤細胞CD151表現量減少,使得細胞附著在細胞外基質的能力變弱,因而增加腫瘤細胞的移動能力,進而促進大腸直腸癌的侵襲轉移的過程。
Hypoxia stress has been shown to involve in several biological processes such as angiogenesis and tumorigenesis. The most rapidly growing region of solid tumors undergoe low oxygen tension because of an imbalance in oxygen supply and consumption and this process called hypoxia. Hypoxia inducible factor-1alpha(HIF-1alpha) is a transcription factor that regulates expression of hypoxia response genes. Previously we had constructed a conserved hypoxia response element (HRE) model by bioinformatics methods. By using this model to screen human, mouse, and rat promoter sequences, thousands of the genes containing HREs have been identified. In this study, a novel candidate gene, CD151, is selected for further characterization. CD151 is a member of the tetraspanin superfamily and broadly expressed by a variety of cell types, notably epithelial cells, endothelial cells, muscle cells, Schwann cells, megakaryocytes, and platelets. This molecule is noted for its strong molecular associations with integrins. In vitro functional studies have pointed to a role for CD151 in cell-cell adhesion, cell migration, platelet aggregation, and angiogenesis. It has also been implicated that HIF-1alpha is elevated in colon cancer cells. Given the bioinformatic prediction that the promoter region of CD151 contains functional HRE, it is likely that expression of CD151 in colon cancer cells might be regulated due to elevation of HIF-1alpha. Thus, we aim to determine effects of hypoxia on CD151 expression and its pathophysiological roles on cancer development and progression. We find that expression of CD151 in tumor tissues is lower than that in normal tissue in colon cancer patients. In vitro study demonstrated CD151 protein and mRNA levels are decreased after desferrioxamine mimic chemical hypoxic treatment in colon cancer cell line SW480 and SW620. Promter activity assay further demonstrated that hypoxia treatment inhibits reporter system carrying the HRE of human CD151 promoter. The hypoxia-induced decrease in CD151 expression can be reversed by transfection of dominant negative form HIF-1alpha. Results from this study should provide novel information in elucidating effect of hypoxia on one of the prognostic marker, CD151, in patients with colon cancer.
1. Bruick, R.K., Oxygen sensing in the hypoxic response pathway: regulation of the hypoxia-inducible transcription factor. Genes Dev, 2003. 17(21): p.2614-23.
2. Lopez-Barneo, J., R. Pardal, and P. Ortega-Saenz, Cellular mechanism of oxygen sensing. Annu Rev Physiol, 2001. 63: p. 259-87.
3. Semenza, G.L., HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol, 2000. 88(4): p. 1474-80.
4. Wiener, C.M., G. Booth, and G.L. Semenza, In vivo expression of mRNAs encoding hypoxia-inducible factor 1. Biochem Biophys Res Commun, 1996. 225(2): p. 485-8.
5. Tian, H., S.L. McKnight, and D.W. Russell, Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev, 1997. 11(1): p. 72-82.
6. Ema, M., et al., A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci U S A, 1997. 94(9): p. 4273-8.
7. Maynard, M.A., et al., Multiple splice variants of the human HIF-3 alpha locus are targets of the von Hippel-Lindau E3 ubiquitin ligase complex. J Biol Chem, 2003. 278(13): p. 11032-40.
8. Wang, G.L. and G.L. Semenza, General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci U S A, 1993. 90(9): p. 4304-8.
9. Jaakkola, P., et al., Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science, 2001. 292(5516): p. 468-72.
10. Maxwell, P.H., et al., The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature, 1999. 399(6733): p. 271-5.
11. Wang, G.L. and G.L. Semenza, Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity: implications for models of hypoxia signal transduction. Blood, 1993. 82(12): p. 3610-5.
12. Hanson, E.S., M.L. Rawlins, and E.A. Leibold, Oxygen and iron regulation of iron regulatory protein 2. J Biol Chem, 2003. 278(41): p. 40337-42.
13. Lando, D., et al., FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev, 2002. 16(12): p. 1466-71.
14. Zhong, H., et al., Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res, 1999. 59(22): p. 5830-5.
15. Harris, A.L., Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer, 2002. 2(1): p. 38-47.
16. Dang, C.V. and G.L. Semenza, Oncogenic alterations of metabolism. Trends Biochem Sci, 1999. 24(2): p. 68-72.
17. Hockel, M., et al., Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res, 1996. 56(19): p. 4509-15.
18. Bindra, R.S. and P.M. Glazer, Genetic instability and the tumor microenvironment: towards the concept of microenvironment-induced mutagenesis. Mutat Res, 2005. 569(1-2): p. 75-85.
19. Seimiya, H., et al., Hypoxia up-regulates telomerase activity via mitogen-activated protein kinase signaling in human solid tumor cells. Biochem Biophys Res Commun, 1999. 260(2): p. 365-70.
20. Wouters, B.G. and J.M. Brown, Cells at intermediate oxygen levels can be more important than the "hypoxic fraction" in determining tumor response to fractionated radiotherapy. Radiat Res, 1997. 147(5): p. 541-50.
21. Wike-Hooley, J.L., J. Haveman, and H.S. Reinhold, The relevance of tumour pH to the treatment of malignant disease. Radiother Oncol, 1984. 2(4): p. 343-66.
22. Teicher, B.A., J.S. Lazo, and A.C. Sartorelli, Classification of antineoplastic agents by their selective toxicities toward oxygenated and hypoxic tumor cells. Cancer Res, 1981. 41(1): p. 73-81.
23. Fitter, S., et al., Molecular cloning of cDNA encoding a novel platelet-endothelial cell tetra-span antigen, PETA-3. Blood, 1995. 86(4): p. 1348-55.
24. Hasegawa, H., et al., SFA-1, a novel cellular gene induced by human T-cell leukemia virus type 1, is a member of the transmembrane 4 superfamily. J Virol, 1996. 70(5): p. 3258-63.
25. Hemler, M.E., Specific tetraspanin functions. J Cell Biol, 2001. 155(7): p. 1103-7.
26. Stipp, C.S., T.V. Kolesnikova, and M.E. Hemler, Functional domains in tetraspanin proteins. Trends Biochem Sci, 2003. 28(2): p. 106-12.
27. Hasegawa, H., et al., Assignment of SFA-1 (PETA-3), a member of the transmembrane 4 superfamily, to human chromosome 11p15.5 by fluorescence in situ hybridization. Genomics, 1997. 40(1): p. 193-6.
28. Sincock, P.M., G. Mayrhofer, and L.K. Ashman, Localization of the transmembrane 4 superfamily (TM4SF) member PETA-3 (CD151) in normal human tissues: comparison with CD9, CD63, and alpha5beta1 integrin. J Histochem Cytochem, 1997. 45(4): p. 515-25.
29. Wright, M.D., et al., Characterization of mice lacking the tetraspanin superfamily member CD151. Mol Cell Biol, 2004. 24(13): p. 5978-88.
30. Karamatic Crew, V., et al., CD151, the first member of the tetraspanin (TM4) superfamily detected on erythrocytes, is essential for the correct assembly of human basement membranes in kidney and skin. Blood, 2004. 104(8): p. 2217-23.
31. Chattopadhyay, N., et al., alpha3beta1 integrin-CD151, a component of the cadherin-catenin complex, regulates PTPmu expression and cell-cell adhesion. J Cell Biol, 2003. 163(6): p. 1351-62.
32. Berditchevski, F., et al., Analysis of the CD151-alpha3beta1 integrin and CD151-tetraspanin interactions by mutagenesis. J Biol Chem, 2001. 276(44): p. 41165-74.
33. Nishiuchi, R., et al., Potentiation of the ligand-binding activity of integrin alpha3beta1 via association with tetraspanin CD151. Proc Natl Acad Sci U S A, 2005. 102(6): p. 1939-44.
34. Gesierich, S., et al., Colocalization of the tetraspanins, CO-029 and CD151, with integrins in human pancreatic adenocarcinoma: impact on cell motility. Clin Cancer Res, 2005. 11(8): p. 2840-52.
35. Zhang, X.A., A.L. Bontrager, and M.E. Hemler, Transmembrane-4 superfamily proteins associate with activated protein kinase C (PKC) and link PKC to specific beta(1) integrins. J Biol Chem, 2001. 276(27): p. 25005-13.
36. Yauch, R.L., et al., Highly stoichiometric, stable, and specific association of integrin alpha3beta1 with CD151 provides a major link to phosphatidylinositol 4-kinase, and may regulate cell migration. Mol Biol Cell, 1998. 9(10): p. 2751-65.
37. Sawada, S., et al., The tetraspanin CD151 functions as a negative regulator in the adhesion-dependent activation of Ras. J Biol Chem, 2003. 278(29): p. 26323-6.
38. Sterk, L.M., et al., The tetraspan molecule CD151, a novel constituent of hemidesmosomes, associates with the integrin alpha6beta4 and may regulate the spatial organization of hemidesmosomes. J Cell Biol, 2000. 149(4): p. 969-82.
39. Hemler, M.E., Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu Rev Cell Dev Biol, 2003. 19: p. 397-422.
40. Testa, J.E., et al., Eukaryotic expression cloning with an antimetastatic monoclonal antibody identifies a tetraspanin (PETA-3/CD151) as an effector of human tumor cell migration and metastasis. Cancer Res, 1999. 59(15): p. 3812-20.
41. Sugiura, T. and F. Berditchevski, Function of alpha3beta1-tetraspanin protein complexes in tumor cell invasion. Evidence for the role of the complexes in production of matrix metalloproteinase 2 (MMP-2). J Cell Biol, 1999. 146(6): p. 1375-89.
42. Sincock, P.M., et al., PETA-3/CD151, a member of the transmembrane 4 superfamily, is localised to the plasma membrane and endocytic system of endothelial cells, associates with multiple integrins and modulates cell function. J Cell Sci, 1999. 112 ( Pt 6): p. 833-44.
43. Boucheix, C. and E. Rubinstein, Tetraspanins. Cell Mol Life Sci, 2001. 58(9): p. 1189-205.
44. Boucheix, C., et al., Tetraspanins and malignancy. Expert Rev Mol Med, 2001. 2001: p. 1-17.
45. Claas, C., et al., Association between the rat homologue of CO-029, a metastasis-associated tetraspanin molecule and consumption coagulopathy. J Cell Biol, 1998. 141(1): p. 267-80.
46. Hashida, H., et al., Clinical significance of transmembrane 4 superfamily in colon cancer. Br J Cancer, 2003. 89(1): p. 158-67.
47. Tokuhara, T., et al., Clinical significance of CD151 gene expression in non-small cell lung cancer. Clin Cancer Res, 2001. 7(12): p. 4109-14.
48. Ang, J., et al., CD151 protein expression predicts the clinical outcome of low-grade primary prostate cancer better than histologic grading: a new prognostic indicator? Cancer Epidemiol Biomarkers Prev, 2004. 13(11 Pt 1): p. 1717-21.
49. Zhong, H., et al., Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res, 2000. 60(6): p. 1541-5.
50. Laughner, E., et al., HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol, 2001. 21(12): p. 3995-4004.
51. Jiang, B.H., et al., Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J Biol Chem, 1996. 271(30): p. 17771-8.
52. Berra, E., et al., Hypoxia-inducible factor-1 alpha (HIF-1 alpha) escapes O(2)-driven proteasomal degradation irrespective of its subcellular localization: nucleus or cytoplasm. EMBO Rep, 2001. 2(7): p. 615-20.
53. Manalo, D.J., et al., Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood, 2005. 105(2): p. 659-69.
54. Mazure, N.M., et al., Repression of alpha-fetoprotein gene expression under hypoxic conditions in human hepatoma cells: characterization of a negative hypoxia response element that mediates opposite effects of hypoxia inducible factor-1 and c-Myc. Cancer Res, 2002. 62(4): p. 1158-65.
55. Yatabe, N., et al., HIF-1-mediated activation of telomerase in cervical cancer cells. Oncogene, 2004. 23(20): p. 3708-15.
56. Gartel, A.L. and K. Shchors, Mechanisms of c-myc-mediated transcriptional repression of growth arrest genes. Exp Cell Res, 2003. 283(1): p. 17-21.
57. Chan, W.K., et al., Cross-talk between the aryl hydrocarbon receptor and hypoxia inducible factor signaling pathways. Demonstration of competition and compensation. J Biol Chem, 1999. 274(17): p. 12115-23.