簡易檢索 / 詳目顯示

研究生: 陳偉修
Chen, Wei-Hsio
論文名稱: 以Spark Plasma Sintering 製備碳化鎢/氧化鋁奈米複合材料之燒結行為、微結構與材料特性研究
The sintering behavior, microstructure and materials properties of tungsten carbide - alumina nanocomposites fabricated by spark plasma sintering
指導教授: 黃肇瑞
Huang, Jow-Lay
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 126
中文關鍵詞: 噴流床碳化熱處理磨耗測試奈米複合材料
外文關鍵詞: Spark plasma sintering, spouted bed, carburization, wear test, nanocomposites
相關次數: 點閱:144下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中,藉由Spark plasma sintering 製備WC-Al2O3複合材料對其緻密化行為及微結構及機械性質進行研究。初始材料使用有機金屬化學氣相沉積法結合噴流床製備;其中,W(CO)6被作為前驅物和Al2O3的粉末在噴流床製備合成WC-Al2O3奈米複合粉體。W(CO)6的分解產生非晶氧化鎢並沉積於Al2O3晶粒,在CH4-H2混合氣碳化形成碳化鎢-氧化鋁複合粉末物種。碳化鎢 - 氧化鋁複合體粉末經由SPS在1200到1400°C的溫度進行燒結。在此燒結溫度範圍,SPS燒結的試片包含W、WC和W2C等的第二相,在1350 °C得到純的W2C相。並針對其密度,硬度和電阻率進行研究。

    首先,透過金屬有機化學氣相沉積(MOCVD)在噴流床及在CH 4-H2氣氛下於600-900℃下合成奈米碳化鎢顆粒。碳化熱處理主要藉由透過碳原子附著於裂解的非晶氧化鎢的外層,並經持續的碳擴散進入非晶氧化鎢顆粒中,在相轉變過程中,從介穩態的W2C轉變成純的WC相。最初低溫形成的W2C隨著碳化持溫時間的增長及碳化溫度的提高可有效將其轉變為WC相。

    其次,藉由添加WC抑制氧化鋁晶粒之成長,進而得到顆粒尺寸300-500奈米的顯微結構來改善WC-Al2O3奈米複合陶瓷的燒結行為和提升其機械性質。WC-Al2O3奈米複合陶瓷在微觀結構上變化,其硬度和斷裂韌性值隨著晶粒尺寸的縮小而有明顯之提升。從顯微結構觀察發現,奈米WC顆粒均勻附著於氧化鋁的晶粒及晶界,進而去抑制氧化鋁基材的晶粒生長。藉由奈米第二相之添加,其破壞模式會從單一相Al2O3的沿晶破壞轉變至WC-Al2O3奈米複合材料的穿晶破壞,進而提升其機械性質。

      最後,將Spark plasma sintering 製備的WC-Al2O3奈米複合陶瓷探討其磨耗之研究,在室溫環境進行氧化鋁磨球對氧化鋁及WC-Al2O3奈米複合材料磨耗測試。純氧化鋁及WC-Al2O3複合材料對氧化鋁球的主要磨耗行為是塑性變形。而氧化鋁材上裂縫之形成和晶粒拉出在磨損過程會提高其磨耗率。

    In this study, the densification behavior of WC-Al2O3 composites prepared via spark plasma sintering (SPS) was investigated. The initial materials were fabricated using a metal-organic chemical vapor deposition process, in which tungsten hexacarbonyl W(CO)6 was used as a precursor and WC-Al2O3 powders were used as the matrix in a spouted chamber. The decomposition of W(CO)6 produced W species that coated the WC-Al2O3 powder and carbonized in CH4-H2 mixing gas to form tungsten carbide-alumina composite powder. The tungsten carbide-alumina composite powder was sintered via SPS in the temperature range of 1200 to 1400 °C. In the above temperature range, secondary phases of W including WC and W2C were found to co-exist in the SPS-treated samples and WC decomposed to form W2C at 1350 °C. The density, hardness, and electrical resistivity of the SPS-treated samples were investigated.
    Before synthesis of tungsten carbide-alumina composite powder, nanostructured tungsten carbide particles were successfully synthesized by metal–organic chemical vapor deposition (MOCVD) in a spouted bed followed by carburization in CH4-H2 atmosphere in the temperature range 700–900°C. The carburization process was little bit of complex, which involved the coating of carbon on the outer surface of the decomposed W(CO)6 precursor particles and then followed by carbon diffusion into the particles, leading to formation of nanostructured WC via an intermediate metastable phase W2C. The carbon deficient phase W2C was formed initially at lower carburization temperature and then transformed to stable WC phase by increasing the temperature and holding time.
    The materials characteristics of tungsten carbide-alumina composite powder are summarized as follows. The addition of WC improved the sintering process and mechanical properties of WC-Al2O3 matrix by hindering its grain growth. Due to the refined microstructure of composites, the hardness and fracture toughness value were found to be increased with the decrease of the WC-Al2O3 the grain size. The WC-Al2O3 composites show maximum toughness of 6.1 MPa•m1/2 and hardness value of 24 GPa, which are higher than those of monolithic alumina. Microstructure observations indicate that WC nanoparticles are dispersed within the alumina matrix which limits the grain growth of alumina matrix. The fracture mode changes from intergranular in the case of monolithic Al2O3 to transgranular mode for nanocomposites to reinforce their mechanical properties.
    Various alumina/tungsten carbide based nanocomposites have been fabricated by spark plasma sintering and their wear properties have been investigated by performing ball-on-disk type wear test at room temperature under ambient environment. The results reveal that the main fracture behavior of the Al2O3/tungsten carbide composites sliding against Al2O3 balls is the plastic deformation. Crack formation and grain pull-out in the wear processes are responsible for enhancing the wear rate.

    摘要 I Abstract III Acknowledgement V Contents VII List of Tables IX List of Figures X Chapter 1 Introduction 1 1-1 Introduction 1 1-2 Motivation and Objectives 3 Chapter 2 Literature survey 5 2-1 Nanocomposite ceramics 5 2-2 Metal-Organic Chemical Vapor Deposition and Spouted Bed 11 2-2-1 Metal-Organic Chemical Vapor Deposition (MOCVD) 11 2-2-2 Spouted bed 13 2-3 Effect of second phase on the ceramics nanocomposite materials 15 2-3-1 Strengthening mechanisms of ceramic matrix composites 15 2-3-2 Toughening mechanisms of ceramics nanocomposite material 16 2-4 Formation of tungsten carbide via carburized thermal treatment 23 2-5 Spark plasma sintering (SPS) 26 2-6 Wear 29 Chapter 3 Experimental procedures 34 3-1 Experimental flow chart 34 3-1-1 Pyrolysis of W(CO)6 precursor 36 3-1-2 Preparation of nanocomposite powder 36 3-2 Carburization treatment 39 3-3 Experiment materials 39 3-4 Densification by SPS 42 3-5 Characterization of materials 45 3-5-1 Thermo gravimetric analysis 45 3-5-2 Phase identification by X-ray diffraction 45 3-5-3 Microstructural observation 46 3-5-4 X-ray photoelectron Spectroscopy 46 3-5-5 Density measurement 46 3-5-6 Mechanical Properties 47 3-5-7 Electrical property 48 3-5-8 Nanoindentation 48 3-5-9 Sliding wear test 49 Chapter 4 Characterization of powder 52 4-1 Preparation and characterization of decomposed precursors 52 4-1-1 Analysis of W(CO)6 precursor 52 4-1-2 The microstructure of decomposed W(CO)6 55 4-1-3 Carburization of decomposed W(CO)6 powder 57 4-2 Preparation and characterization of the nanocomposite materials 67 4-2-1 The microstructure of the nanocomposite materials 67 4-2-2 Carburization and characterization of the nanocomposite materials 70 Chapter 5 Sintering behavior and mechanical properties of tungsten carbide–alumina composites 74 5-1 The effect of sintering temperature on the nanocomposite 74 5-1-1 Characterization 74 5-1-2 Property of SPS-treated composites 80 5-2 Effect of the carburized time on composites 86 5-2-1 Characterization 86 5-2-2 Property of SPS-treated composites 89 5-2-3 Toughening mechanism of SPS-treated composites 93 5-3 The effects of WC contents on the characteristic of WC-Al2O3 composites 95 5-3-1 Sintering behavior 95 5-3-2 Microstructure and mechanical properties 97 5-3-3 Nanoindentation 101 Chapter 6 Wear behavior of WC/Al2O3 composite 107 6-1 Characterization 107 6-2 Wear test 109 Chapter 7 Conclusions 113 References 114 List of Publications 124

    [1] S. Lio, M. Watanabe, M. Matsubara, Y. Matsuo, Mechanical-properties of alumina silicon-carbide whisker composites, Journal of the American Ceramic Society, 72 (1989) 1880-1884.
    [2] W.J. Tseng, P.D. Funkenbusch, Microstructure and densification of pressureless-sintered Al2O3/Si3N4-Whisker Composites, Journal of the American Ceramic Society, 75 (1992) 1171-1175.
    [3] C.T. Fu, J.M. Wu, A.K. Li, Microstructure and mechanical properties of Cr3C2 particulate reinforced Al2O3 matrix composites, Journal of Materials Science, 29 (1994) 2671-2677.
    [4] H.T. Lin, W.S. Huang, S.C. Wang, H.H. Lu, W.C.J. Wei, J.L. Huang, Investigation of chromium carbide/alumina nano-composite prepared via MOCVD in fluidized bed and densification process, Materials Science and Engineering B-Solid State Materials for Advanced Technology, 127 (2006) 22-28.
    [5] K. Nihara, New design concept of structural ceramics-ceramic nanocomposites, Journal of the Ceramic Society of Japan, 99 (1991) 974-982.
    [6] H.T. Lin, B.Z. Liu, W.H. Chen, J.L. Huang, P.K. Nayak, Study of color change and microstructure development of Al2O3-Cr2O3/Cr3C2 nanocomposites prepared by spark plasma sintering, Ceramics International, 37 (2011) 2081-2087.
    [7] W. Acchar, A.E. Martinelli, F.A. Vieira, C.A.A. Cairo, Sintering behaviour of alumina-tungsten carbide composites, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 284 (2000) 84-87.
    [8] S.G. Huang, K. Vanmeensel, O. Van der Biest, J. Vleugels, Pulsed electric current sintering and characterization of ultrafine Al2O3-WC composites, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 527 (2010) 584-589.
    [9] H.T. Lin, P.K. Nayak, B.Z. Liu, W.H. Chen, J.L. Huang, Mechanical properties of Al2O3-Cr2O3/Cr3C2 nanocomposite fabricated by spark plasma sintering, Journal of the European Ceramic Society, 32 (2012) 77-83.
    [10] Z.Y. Deng, J.L. Shi, Y.F. Zhang, D.Y. Jiang, J.K. Guo, Pinning effect of SiC particles on mechanical properties of Al2O3-SiC ceramic matrix composites, Journal of the European Ceramic Society, 18 (1998) 501-508.
    [11] G. Pezzotti, W.H. Muller, Strengthening mechanisms in Al2O3/SiC nanocomposites, Comp Mater Sci, 22 (2001) 155-168.
    [12] S. Bajwa, W.M. Rainforth, W.E. Lee, Sliding wear behaviour of SiC- Al2O3 nanocomposites, Wear, 259 (2005) 553-561.
    [13] J.H. Chae, K.H. Kim, Y.H. Choa, J. Matsushita, J.W. Yoon, K.B. Shim, Microstructural evolution of Al2O3-SiC nanocomposites during spark plasma sintering, J Alloy Compd, 413 (2006) 259-264.
    [14] D.S. Mao, X.H. Liu, J. Li, S.Y. Guo, X.B. Zhang, Z.Y. Mao, A fine cobalt-toughened Al2O3-TiC ceramic and its wear resistance, Journal of Materials Science, 33 (1998) 5677-5682.
    [15] J.H. Gong, H.Z. Miao, Z. Zhao, The influence of TiC-particle-size on the fracture toughness of Al2O3-30 wt.%TiC composites, Journal of the European Ceramic Society, 21 (2001) 2377-2381.
    [16] S. Begin-Colin, A. Mocellin, J. Von Stebut, K. Bordji, D. Mainard, Al2O3 and Al2O3-TiN wear resistance in a simulated biological environment, Journal of Materials Science, 33 (1998) 2837-2843.
    [17] F.C. Meng, C. Liu, F. Zhang, Z.Q. Tian, W.J. Huang, Densification and mechanical properties of fine-grained Al2O3-ZrO2 composites consolidated by spark plasma sintering, J Alloy Compd, 512 (2012) 63-67.
    [18] M. Michalek, M. Kasiarova, M. Michalkova, D. Galusek, Mechanical and functional properties of Al2O3-ZrO2-MWCNTs nanocomposites, Journal of the European Ceramic Society, 34 (2014) 3329-3337.
    [19] G. de Portu, S. Guicciardi, C. Melandri, F. Monteverde, Wear behaviour of Al2O3-Mo and Al2O3-Nb composites, Wear, 262 (2007) 1346-1352.
    [20] M. Sternitzke, Structural ceramic nanocomposites, Journal of the European Ceramic Society, 17 (1997) 1061-1082.
    [21] K. Niihara, T. Kusunose, S. Kohsaka, T. Sekino, Y.H. Choa, Multi-functional ceramic composites through nanocomposite technology, Key Eng Mat, 2 (1999) 527-534.
    [22] S.-M. Choi, H. Awaji, Nanocomposites—a new material design concept, Science and Technology of Advanced Materials, 6 (2005) 2-10.
    [23] J.C. Kim, B.K. Kim, Synthesis of nanosized tungsten carbide powder by the chemical vapor condensation process, Scripta Materialia, 50 (2004) 969-972.
    [24] P.E. Gishler, The spouted bed technique - discovery and early studies at nrc, Can J Chem Eng, 61 (1983) 267-268.
    [25] B. Caussat, F.L. Juarez, C. Vahlas, Hydrodynamic study of fine metallic powders in an original spouted bed contactor in view of chemical vapor deposition treatments, Powder Technol, 165 (2006) 65-72.
    [26] P. Schwarzkopf, R. Kieffer, Refractory hard metals: borides, carbides, nitrides, and silicides; the basic constituents of cemented hard metals and their use as high-temperature materials, Macmillan, New York, 1953.
    [27] T.I. Kosolapova, Carbides; properties, production, and applications, Plenum Press, New York, 1971.
    [28] L.H. Yaverbaum, Technology of Metal Powders Recent Development, Noyes DataCorp, NewYork, 1980.
    [29] S.I. Cha, S.H. Hong, B.K. Kim, Spark plasma sintering behavior of nanocrystalline WC-10Co cemented carbide powders, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 351 (2003) 31-38.
    [30] M. Eriksson, M. Radwan, Z.J. Shen, Spark plasma sintering of WC, cemented carbide and functional graded materials, International Journal of Refractory Metals & Hard Materials, 36 (2013) 31-37.
    [31] T. Ohji, T. Hirano, A. Nakahira, K. Niihara, Particle/matrix interface and its role in creep inhibition in alumina/silicon carbide nanocomposites, Journal of the American Ceramic Society, 79 (1996) 33-45.
    [32] T. Ohji, Y.K. Jeong, Y.H. Choa, K. Niihara, Strengthening and toughening mechanisms of ceramic nanocomposites, Journal of the American Ceramic Society, 81 (1998) 1453-1460.
    [33] J.L. Huang, P.K. Nayak, Effect of Nano-TiN on Mechanical Behavior of Si3N4 Based Nanocomposites by Spark Plasma Sintering (SPS), INTECH Open Access Publisher, 2012.
    [34] Y. Wei, N. Li, C. Ke, Effect of Silicon Carbide on Reactions between Molten Steel and Fused Magnesia-Silicon Carbide Composite Refractory, American Ceramic Society Bulletin, 86 (2007) 9201-9205.
    [35] K. Omata, H. Mazaki, H. Yagita, K. Fujimoto, Preparation of nickel-on-active carbon catalyst by CVD method for methanol carbonylation, Catal Lett, 4 (1990) 123-128.
    [36] C. Dossi, R. Psaro, R. Ugo, Z.C. Zhang, W.M.H. Sachtler, Non-acidic Pd/Y zeolite catalysts from organopalladium precursors: preparation and catalytic activity in MCP reforming, Journal of Catalysis, 149 (1994) 92-99.
    [37] J. L. Huang, P.K. Nayak, Processing and Characterization of Alumina/ Chromium Carbide Ceramic Nanocomposite, 2011.
    [38] W.C.J. Wei, M.H. Lo, Processing and properties of (Mo,Cr) oxycarbides from MOCVD, Appl Organomet Chem, 12 (1998) 201-220.
    [39] H.T. Lin, P.K. Nayak, S.C. Wang, S.Y. Chang, J.L. Huang, Electron-energy loss spectroscopy and Raman studies of nanosized chromium carbide synthesized during carbothermal reduction process from precursor Cr(CO)6, Journal of the European Ceramic Society, 31 (2011) 2481-2487.
    [40] J. Lee, J. Kim, H. Shin, MOCVD of TiN and/or Ti from new precursors, Thin Solid Films, 320 (1998) 15-19.
    [41] C.S. Smith, Grains, Phases, and Interfaces - an Interpretation of Microstructure, T Am I Min Met Eng, 175 (1948) 15-51.
    [42] N.J. Petch, The cleavage strength of polycrystals, J Iron Steel I, 174 (1953) 25-28.
    [43] K.T. Faber, A.G. Evans, Crack deflection processes .1. Theory, Acta Metall Mater, 31 (1983) 565-576.
    [44] K.T. Faber, A.G. Evans, Crack deflection processes. 2. Experiment, Acta Metall Mater, 31 (1983) 577-584.
    [45] A.G. Evans, The strength of brittle materials containing second phase dispersions, Philosophical Magazine, 26 (1972) 1327.
    [46] A.G. Evans, K.T. Faber, Crack-growth resistance of microcracking brittle materials, Journal of the American Ceramic Society, 67 (1984) 255-260.
    [47] K.M. Reddy, T.N. Rao, J. Joardar, Stability of nanostructured W-C phases during carburization of WO3, Materials Chemistry and Physics, 128 (2011) 121-126.
    [48] A. Kumar, K. Singh, O.R. Pandey, Reduction Of WO3 to nano-WC by thermo-chemical reaction route, Physica E, 41 (2009) 677-684.
    [49] A.I. Raichenko, Theory of metal powder sintering by an electric-pulse discharge, Soviet Powder Metallurgy and Metal Ceramics, 24 (1985) 26-30.
    [50] M. Tokia, Mechanism of Spark Plasma Sintering and its application to ceramics, Nyn Seramikkasu 10, 1997, pp. S.43-53.
    [51] J.T.B. Jr., Survey of possible wear mechanisms, Wear, 1 (1957/58) 119-141.
    [52] B. Bhushan, Modern tribology handbook, CRC Press, Boca Raton, FL, 2001.
    [53] A.G. Evans, E.A. Charles, Fracture Toughness Determinations by Indentation, Journal of the American Ceramic Society, 59 (1976) 371-372.
    [54] R. Raveendran, J.R. Pandya, Application of modified Kick's law in anisotropic studies of quenched potassium chloride cleavages, Materials Chemistry and Physics, 45 (1996) 1-5.
    [55] G. Wilkinson, F.G.A. Stone, E.W. Abel, Comprehensive organometallic chemistry : the synthesis, reactions, and structures of organometallic compounds, 1st ed., Pergamon Press, Oxford Oxfordshire ; New York, 1982.
    [56] P.K. Sahoo, S.S.K. Kamal, M. Premkumar, B. Sreedhar, S.K. Srivastava, L. Durai, Synthesis, characterization and densification of W-Cu nanocomposite powders, International Journal of Refractory Metals & Hard Materials, 29 (2011) 547-554.
    [57] J. Kovac, P. Panjan, A. Zalar, XPS analysis of WxCy thin films prepared by sputter deposition, Vacuum, 82 (2007) 150-153.
    [58] R.U. Kirss, L. Meda, Chemical vapor deposition of tungsten oxide, Appl Organomet Chem, 12 (1998) 155-160.
    [59] A.D. D. Davazoglou, R. Fourcade, A. Hugot-Legoff, P. Delich`ere, A., Perez, Etude des propri´et´es optiques et de la structure de couches minces ´electrochromes de WO3 pr´epar´ees par CVD, Revue de Physique Appliquée (Paris), 23 (1988) 8.
    [60] D.T. Hurd, H.R. Mcentee, P.H. Brisbin, Tungsten carbide by pyrolysis of tungsten hexacarbonyl, Ind Eng Chem, 44 (1952) 2432-2435.
    [61] H. Okamoto, C-W (Carbon-Tungsten), Journal of Phase Equilibria and Diffusion, 29 (2008) 2.
    [62] P. Gustafson, Thermodynamic Evaluation of C-W System, Mater Sci Tech Ser, 2 (1986) 653-658.
    [63] M. Ahmadian, T. Chandra, D. Wexler, A. Calka, The effect of boron on the grain size of the aluminides matrix in hot pressed WC composites, Powder Metallurgy Progress, 9 (2009) 5.
    [64] Y.W. Zhu, S. Murali, W.W. Cai, X.S. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications, Adv Mater, 22 (2010) 5226-5226.
    [65] J. Luthin, C. Linsmeier, Influence of oxygen on the carbide formation on tungsten, J Nucl Mater, 290 (2001) 121-125.
    [66] H. Okamoto, Binary alloy phase diagrams updating service, ASM International, Materials Park, Ohio, 1992.
    [67] M.E. Vinayo, F. Kassabji, J. Guyonnet, P. Fauchais, Plasma sprayed WC–Co coatings: Influence of spray conditions (atmospheric and low pressure plasma spraying) on the crystal structure, porosity, and hardness, Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 3 (1985) 2483-2489.
    [68] H. Qu, S. Zhu, Q. Li, C. Ouyang, Influence of sintering temperature and holding time on the densification, phase transformation, microstructure and properties of hot pressing WC-40 vol.%Al2O3 composites, Ceramics International, 38 (2012) 1371-1380.
    [69] S.I. Cha, S.H. Hong, Microstructures of binderless tungsten carbides sintered by spark plasma sintering process, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 356 (2003) 381-389.
    [70] J.F. Zhao, T. Holland, C. Unuvar, Z.A. Munir, Sparking plasma sintering of nanometric tungsten carbide, International Journal of Refractory Metals & Hard Materials, 27 (2009) 130-139.
    [71] A. Mukhopadhyay, B. Basu, Recent developments on WC-based bulk composites, Journal of Materials Science, 46 (2011) 571-589.
    [72] T.S. Srivatsan, K. Manigandan, M. Petraroli, R.M. Trejo, T.S. Sudarshan, Influence of size of nanoparticles and plasma pressure compaction on microstructural development and hardness of bulk tungsten samples, Advanced Powder Technology, 24 (2013) 190-199.
    [73] P.B.Kotelnikov, S.N.Bashlykov, Z.G.Galiakbarov, A.I..Kashtanov, Handbook of Extremely High-Melting Elements and Compounds, Japanese Transl., Osobo Tugoplavkie Elementyi Soedineniya Spravochnik, Metallurgiya, Moscow, 1969.
    [74] D.H. Zheng, X.Q. Li, X. Ai, C. Yang, Y.Y. Li, Bulk WC-Al2O3 composites prepared by spark plasma sintering, International Journal of Refractory Metals & Hard Materials, 30 (2012) 51-56.
    [75] H. Taimatsu, S. Sugiyama, Y. Kodaira, Synthesis of W2C by reactive hot pressing and its mechanical properties, Mater Trans, 49 (2008) 1256-1261.
    [76] P.K. Nayak, H.T. Lin, M.P. Chang, W.H. Chen, J.L. Huang, Microstructure analysis and mechanical properties of a new class of Al2O3-WC nanocomposites fabricated by spark plasma sintering, Journal of the European Ceramic Society, 33 (2013) 3095-3100.
    [77] A.A. Mahday, M.S. El-Eskandarany, H.A. Ahmed, A.A. Amer, Mechanically induced solid state carburization for fabrication of nanocrystalline ZrC refractory material powders, J Alloy Compd, 299 (2000) 244-253.
    [78] L.J. Zhang, H. Yang, X.Z. Guo, J.C. Shen, X.Y. Zhu, Preparation and properties of silicon carbide ceramics enhanced by TiN nanoparticles and SiC whiskers, Scripta Materialia, 65 (2011) 186-189.
    [79] X.Z. Guo, H. Yang, X.Y. Zhu, L.J. Zhang, Preparation and properties of nano-SiC-based ceramic composites containing nano-TiN, Scripta Materialia, 68 (2013) 281-284.
    [80] M.N. Rahaman, Ceramic processing and sintering, 2nd ed., M. Dekker, New York, 2003.
    [81] S.J.L. Kang, Sintering: Densification, Grain Growth and Microstructure, Oxford 2005.
    [82] H.J. Scussel, Friction and wear of cemented carbides, ASM International, ASM Handbook, 18 (1992) 795-800.
    [83] S. Guicciardi, D. Sciti, C. Melandri, A. Bellosi, Nanoindentation characterization of submicro- and nano-sized liquid-phase-sintered SiC ceramics, Journal of the American Ceramic Society, 87 (2004) 2101-2107.
    [84] I.J. McColm, Ceramic hardness, Plenum Press, New York, 1990.
    [85] T. Rodriguez-Suarez, J.F. Bartolome, A. Smirnov, S. Lopez-Esteban, R. Torrecillas, J.S. Moya, Sliding wear behaviour of alumina/nickel nanocomposites processed by a conventional sintering route, Journal of the European Ceramic Society, 31 (2011) 1389-1395.
    [86] R. Holm, Electric contacts, Stockholm, Sweden, 1946.
    [87] J.F. Archard, Contact and rubbing of flat surfaces, J Appl Phys, 24 (1953) 981-988.
    [88] S.G. Roberts, Depths of cracks produced by abrasion of brittle materials, Scripta Materialia, 40 (1998) 101-108.

    下載圖示 校內:2017-09-01公開
    校外:2017-09-01公開
    QR CODE