| 研究生: |
朱珩萁 Chu, Heng-Chi |
|---|---|
| 論文名稱: |
以釩摻雜氧化鋅薄膜提升壓電壓力感測器靈敏度之研究 Study on Improving the Sensitivity of Vanadium Doped ZnO Thin Film-Based Piezoelectric Pressure Sensor |
| 指導教授: |
黃肇瑞
Huang, Jow-Lay |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 135 |
| 中文關鍵詞: | 氧化鋅 、釩 、壓電光電子效應 、壓力感測器 、靈敏度 |
| 外文關鍵詞: | ZnO, Vanadium, Piezotronics effect, Pressure sensor, Sensitivity |
| 相關次數: | 點閱:56 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
壓電效應是當施加應力於不對稱晶體結構之材料時,產生?負離子的錯移,形成 電極化的現象。氧化鋅為 n 型半導體材料,同時具有壓電特性,透過應變產生的壓電 勢(piezo-potential)來控制金屬與半導體接面的蕭特基能障(Schottky barrier)大小,稱為 壓電光電子效應(Piezotronics effect),可應用於壓力感測器上。然而較低的壓電係數 (12.4 pC/N)以及應力靈敏度(Stress sensitivity)導致氧化鋅不利於?方向發展,本研究 利用釩(Vanadium)摻雜氧化鋅,以較小半徑的釩離子取代鋅的位置,增強電極化強度, 進而提升壓電係數。?外,釩摻雜也會導致晶粒尺寸、晶格缺陷、載子濃度及能帶結 構的改變,進而影響壓電光電子效應的性能。
本實驗使用氧化鋅(ZnO)以及五氧化二釩(V2O5)靶材進行射頻磁控共濺鍍技術, 藉由調控不同五氧化二釩靶材的濺鍍功率,以改變釩的摻雜濃度,並觀察釩摻雜氧化 鋅薄膜之表面形貌、壓電係數和能帶結構的變化,最後結合金電極,形成具有壓電光 電子效應的壓力感測器,透過施加不同重量之砝碼作為應力,探討其壓力靈敏度。
研究成果顯示:藉由釩的摻雜,使氧化鋅表面晶粒尺寸縮小,晶界以及表面缺陷 比例上升,進而導致載子濃度的減少。在合適的五氧化二釩靶材濺鍍功率下(40 W), 釩摻雜氧化鋅維持 (002) c 軸取向,同時,以較小半徑之五價釩摻雜,強化了氧化鋅 的極化能力,壓電係數因而由 12.4 pm/V 提升至 24.3 pm/V。?外,本研究也成功製 備具有壓電光電子效應之壓力感測器,在相同負載下,釩摻雜氧化鋅的應力靈敏度由 100 MPa-1 上升至 250 MPa-1,經由能帶結構及載子傳輸分析可得知,釩摻雜降低了氧 化鋅的功函數(Work function)與電子親和力(Electron affinity),形成了強蕭特基能障和 內電場強度(Build-in voltage),再加上低載子濃度抑制了屏蔽效應(Screen effect),避免 壓電勢被抵消,使得整體壓電壓力感測器之性能提升。
In this study, vanadium(V) doped zinc oxide(ZnO) thin film which deposited by RF magnetron co-sputtering system with ZnO and V2O5 targets were be observe the changes in surface morphology, lattice defects, piezoelectric coefficient, carrier concentration, and band structure. Finally, the V doped ZnO thin films were coated with gold electrodes to fabricate the piezoelectric pressure sensors, which operate based on the piezotronic effect, and their sensitivity was investigated. According to experimental results, under the appropriate doping power(40 W), the (002) c-axis orientation was maintained. Additionally, doping V5+ ions, which have smaller radius, enhanced the polarization of the V-O bonds, thereby increasing the piezoelectric coefficient from 12.4 pm/V to 24.3 pm/V. Furthermore, as the vanadium doping concentration increased, the grain size of ZnO on the surface decreased and the proportion of grain boundaries and surface defects increased, besides the carrier concentration decreased, which limited the screening effect by preventing the cancellation of the piezoelectric potential. Furthermore, vanadium doping reduced the work function and electron affinity of zinc oxide, forming a strong Schottky barrier and internal electric field intensity, thereby enhancing the overall performance of the piezoelectric pressure sensor with sensitivity and rectifier ability. The stress sensitivity could reach up to 1060 MPa-1.
[1] J. W. Matiko, N. J. Grabham, S. P. Beeby, and M. J. Tudor, “Review of the application of energy harvesting in buildings,” Measurement Science and Technology, vol. 25, no. 1, 2014.
[2] P. Sharma, M. R. Hasan, N. K. Mehto, Deepak, A. Bishoyi, and J. Narang, “92 years of zinc oxide: has been studied by the scientific community since the 1930s- An overview,” Sensors International, vol. 3, 2022.
[3] X. B. Wang, C. Song, D. M. Li, K. W. Geng, F. Zeng, and F. Pan, “The influence of different doping elements on microstructure, piezoelectric coefficient and resistivity of sputtered ZnO film,” Applied Surface Science, vol. 253, no. 3, pp. 1639-1643, 2006.
[4] S. S. Dani, A. Tripathy, N. R. Alluri, S. Balasubramaniam, and A. Ramadoss, “A critical review: the impact of electrical poling on the longitudinal piezoelectric strain coefficient,” Materials Advances, vol. 3, no. 24, pp. 8886-8921, 2022.
[5] S. R. A. Ruth, V. R. Feig, H. Tran, and Z. Bao, “Microengineering Pressure Sensor Active Layers for Improved Performance,” Advanced Functional Materials, vol. 30, no. 39, 2020.
[6] W. L. Ong, H. Huang, J. Xiao, K. Zeng, and G. W. Ho, “Tuning of multifunctional Cu-doped ZnO films and nanowires for enhanced piezo/ferroelectric-like and gas/photoresponse properties,” Nanoscale, vol. 6, no. 3, pp. 1680-90, 2014.
[7] V. K. Samoei, and A. H. Jayatissa, “Aluminum doped zinc oxide (AZO)-based pressure sensor,” Sensors and Actuators A: Physical, vol. 303, 2020.
[8] D. Zhu, T. Hu, Y. Zhao, W. Zang, L. Xing, and X. Xue, “High-performance self- powered/active humidity sensing of Fe-doped ZnO nanoarray nanogenerator,” Sensors and Actuators B: Chemical, vol. 213, pp. 382-389, 2015.
[9] Z. L. Wang, “Zinc oxide nanostructures: growth, properties and applications,” Journal of Physics: Condensed Matter, vol. 16, no. 25, pp. R829-R858, 2004.
[10] S. Abubakar, S. T. Tan, J. Y. C. Liew, Z. A. Talib, R. Sivasubramanian, C. A. Vaithilingam, S. S. Indira, W. C. Oh, R. Siburian, S. Sagadevan, and S. Paiman, “Controlled Growth of Semiconducting ZnO Nanorods for Piezoelectric Energy Harvesting-Based Nanogenerators,” Nanomaterials (Basel), vol. 13, no. 6, Mar 13, 2023.
[11] I. Ayoub, V. Kumar, R. Abolhassani, R. Sehgal, V. Sharma, R. Sehgal, H. C. Swart, and Y. K. Mishra, “Advances in ZnO: Manipulation of defects for enhancing their technological potentials,” Nanotechnology Reviews, vol. 11, no. 1, pp. 575-619, 2022.
[12] A. Janotti, and C. G. Van de Walle, “Fundamentals of zinc oxide as a semiconductor,” Reports on Progress in Physics, vol. 72, no. 12, 2009.
[13] A. Janotti, and C. G. Van de Walle, “Native point defects in ZnO,” Physical Review B, vol. 76, no. 16, 2007.
[14] L. Cabral, V. Lopez-Richard, J. L. F. Da Silva, G. E. Marques, M. P. Lima, Y. J. Onofre, M. D. Teodoro, and M. P. F. de Godoy, “Insights into the nature of optically active defects of ZnO,” Journal of Luminescence, vol. 227, 2020.
[15] F. Tuomisto, V. Ranki, K. Saarinen, and D. C. Look, “Evidence of the Zn vacancy acting as the dominant acceptor in n-type ZnO,” Phys Rev Lett, vol. 91, no. 20, pp. 205502, Nov 14, 2003.
[16] V. Gurylev, and T. P. Perng, “Defect engineering of ZnO: Review on oxygen and zinc vacancies,” Journal of the European Ceramic Society, vol. 41, no. 10, pp. 4977-4996, 2021.
[17] C. Y. Tsai, J. D. Lai, S. W. Feng, C. J. Huang, C. H. Chen, F. W. Yang, H. C. Wang, and L. W. Tu, “Growth and characterization of textured well-faceted ZnO on planar Si(100), planar Si(111), and textured Si(100) substrates for solar cell applications,” Beilstein J Nanotechnol, vol. 8, pp. 1939-1945, 2017.
[18] S. Liu, and C. R. Liu, “Morphology Control by Pulsed Laser in Chemical Deposition Illustrated in ZnO Crystal Growth,” Crystal Growth & Design, vol. 19, no. 5, pp. 2912-2918, 2019.
[19] P. Hariharan, S. Sundarrajan, G. Arthanareeswaran, S. Seshan, D. B. Das, and A. F. Ismail, “Advancements in modification of membrane materials over membrane separation for biomedical applications-Review,” Environ Res, vol. 204, no. Pt B, pp. 112045, Mar, 2022.
[20] S. Widodo, “Characterization of Thin Film Nickel (Ni) Deposition by Sputtering Method,” system, vol. 1, pp. 3, 2015.
[21] S. Singh, and B. Rout, “Simulation study of surface sputtering and distribution of ions in silicon due to low-energy high-fluence cobalt irradiation,” Surfaces and Interfaces, vol. 24, 2021.
[22] Z. Qiao, and D. Mergel, “Comparison of radio-frequency and direct-current magnetron sputtered thin In2O3:Sn films,” Thin Solid Films, vol. 484, no. 1-2, pp. 146-153, 2005.
[23] J. T. Gudmundsson, “Physics and technology of magnetron sputtering discharges,” Plasma Sources Science and Technology, vol. 29.11 2020.
[24] D. Maurya, A. Sardarinejad, and K. Alameh, “Recent Developments in R.F. Magnetron Sputtered Thin Films for pH Sensing Applications—An Overview,” Coatings, vol. 4, no. 4, pp. 756-771, 2014.
[25] P. Hajara, T. P. Rose, and K. J. Saji, “Effect of substrate temperature and RF power on the structural and optical properties of sputtered ZnO thin films,” Journal of Physics: Conference Series, vol. 2357, no. 1, 2022.
[26] S. K. Pandey, S. K. Pandey, U. P. Deshpande, V. Awasthi, A. Kumar, M. Gupta, and S. Mukherjee, “Effect of oxygen partial pressure on the behavior of dual ion beam sputtered ZnO thin films,” Semiconductor Science and Technology, vol. 28, no. 8, 2013.
[27] S. M. Haque, K. D. Rao, J. S. Misal, R. B. Tokas, D. D. Shinde, J. V. Ramana, S. Rai, and N. K. Sahoo, “Study of hafnium oxide thin films deposited by RF magnetron sputtering under glancing angle deposition at varying target to substrate distance,” Applied Surface Science, vol. 353, pp. 459-468, 2015.
[28] K. Uchino, "The Development of Piezoelectric Materials and the New Perspective," Advanced Piezoelectric Materials, pp. 1-92, 2017.
[29] P. K. Panda, and B. Sahoo, “PZT to Lead Free Piezo Ceramics: A Review,” Ferroelectrics, vol. 474, no. 1, pp. 128-143, 2015.
[30] G. Kalimuldina, N. Turdakyn, I. Abay, A. Medeubayev, A. Nurpeissova, D. Adair, and Z. Bakenov, “A Review of Piezoelectric PVDF Film by Electrospinning and Its Applications,” Sensors (Basel), vol. 20, no. 18, Sep 12, 2020.
[31] R. d. G. Ballas, “The Piezoelectric Effect – an Indispensable Solid State Effect for Contemporary Actuator and Sensor Technologies,” Journal of Physics: Conference Series, vol. 1775, 2021.
[32] K. K. Das, B. Basu, P. Maiti, and A. K. Dubey, “Piezoelectric nanogenerators for self-powered wearable and implantable bioelectronic devices,” Acta Biomater, vol. 171, pp. 85-113, Nov, 2023.
[33] G. Clementi, F. Cottone, A. Di Michele, L. Gammaitoni, M. Mattarelli, G. Perna, M. López-Suárez, S. Baglio, C. Trigona, and I. Neri, “Review on Innovative Piezoelectric Materials for Mechanical Energy Harvesting,” Energies, vol. 15, no. 17, 2022.
[34] Z. L. Wang, and W. Wu, “Piezotronics and piezo-phototronics: fundamentals and applications,” National Science Review, vol. 1, no. 1, pp. 62-90, 2014.
[35] V. Consonni, and A. M. Lord, “Polarity in ZnO nanowires: A critical issue for piezotronic and piezoelectric devices,” Nano Energy, vol. 83, 2021.
[36] T. Cossuet, E. Appert, J. L. Thomassin, and V. Consonni, “Polarity-Dependent Growth Rates of Selective Area Grown ZnO Nanorods by Chemical Bath Deposition,” Langmuir, vol. 33, no. 25, pp. 6269-6279, Jun 27, 2017.
[37] D. Mora-Fonz, T. Lazauskas, M. R. Farrow, C. R. A. Catlow, S. M. Woodley, and A. A. Sokol, “Why Are Polar Surfaces of ZnO Stable?,” Chemistry of Materials, vol. 29, no. 12, pp. 5306-5320, 2017.
[38] J. H. Lee, W. J. Lee, S. H. Lee, S. M. Kim, S. Kim, and H. M. Jang, “Atomic-scale origin of piezoelectricity in wurtzite ZnO,” Phys Chem Chem Phys, vol. 17, no. 12, pp. 7857-63, Mar 28, 2015.
[39] S. G. Kumar, R. Kavitha, and C. Sushma, "Doped zinc oxide nanomaterials: structure–electronic properties and photocatalytic applications," Surface Science of Photocatalysis, Interface Science and Technology, pp. 285-312, 2020.
[40] G. A. S. Josephine, and A. Sivasamy, “Nanocrystalline ZnO doped Dy2O3 a highly active visible photocatalyst: The role of characteristic f orbital's of lanthanides for visible photoactivity,” Applied Catalysis B: Environmental, vol. 150-151, pp. 288- 297, 2014.
[41] M. Carofiglio, S. Barui, V. Cauda, and M. Laurenti, “Doped Zinc Oxide Nanoparticles: Synthesis, Characterization and Potential Use in Nanomedicine,” Appl Sci (Basel), vol. 10, no. 15, pp. 5194, Aug 1, 2020.
[42] Y. Kumar, A. Sahai, S. F. Olive-Méndez, N. Goswami, and V. Agarwal, “Morphological transformations in cobalt doped zinc oxide nanostructures: Effect of doping concentration,” Ceramics International, vol. 42, no. 4, pp. 5184-5194, 2016.
[43] J. T. Luo, Y. C. Yang, X. Y. Zhu, G. Chen, F. Zeng, and F. Pan, “Enhanced electromechanical response of Fe-doped ZnO films by modulating the chemical state and ionic size of the Fe dopant,” Physical Review B, vol. 82, no. 1, 2010.
[44] F. Pan, J. Luo, Y. Yang, X. Wang, and F. Zeng, “Giant piezoresponse and promising application of environmental friendly small-ion-doped ZnO,” Science China Technological Sciences, vol. 55, no. 2, pp. 421-436, 2011.
[45] D. G. B. D. D. Barceloux, “Vanadium,” Journal of Toxicology: Clinical Toxicology, vol. 37, no. 2, pp. 265-278, 1999.
[46] M. W. j.Haber, R.Tokarz, “Vanadium pentoxide I. Structures and properties,” Applied Catalysis A: General, vol. 157, no. 1-2, pp. 3-22, 1997.
[47] C. S. Y. C. Yang, X. H. Wang, F. Zeng, and F. Pan, “Giant piezoelectric coefficient in ferroelectric vanadium doped ZnO films,” APPLIED PHYSICS LETTERS, vol. 92, no. 1, 2008.
[48] C. S. Y. C. Yang, F. Zeng, and F. Pan, “V5+ ionic displacement induced ferroelectric behavior in V-doped ZnO films,” APPLIED PHYSICS LETTERS, vol. 90, no. 24, 2007.
[49] W. Seol, G. Anoop, H. Park, C. W. Shin, J. Y. Lee, T. Y. Kim, W. S. Kim, H. Joh, S. Samanta, and J. Y. Jo, “Ferroelectricity in solution-processed V-doped ZnO thin films,” Journal of Alloys and Compounds, vol. 853, 2021.
[50] D. Karanth, and H. Fu, “Large electromechanical response in ZnO and its microscopic origin,” Physical Review B, vol. 72, no. 6, 2005.
[51] M. Laurenti, M. Castellino, D. Perrone, A. Asvarov, G. Canavese, and A. Chiolerio, “Lead-free piezoelectrics: V(3+) to V(5+) ion conversion promoting the performances of V-doped Zinc Oxide,” Sci Rep, vol. 7, pp. 41957, Feb 6, 2017.
[52] W. D. Shao, X. F. Chen, W. Ren, P. Shi, X. Q. Wu, O. K. Tan, W. G. Zhu, and X. Yao, “V-Doped ZnO Thin Films Prepared by RF Magnetron Sputtering,” Ferroelectrics, vol. 406, no. 1, pp. 10-15, 2010.
[53] A. D. Bartolomeo, “Graphene Schottky diodes: An experimental review of the rectifying graphene/semiconductor heterojunction,” Physics Reports, vol. 606, pp. 1-58, 2016.
[54] D. A. Neamen, "Metal–Semiconductor and Semiconductor Heterojunctions," Semiconductor Physics And Devices: McGraw-Hill Higher Education, 2011.
[55] T. Kamiya, K. Tajima, K. Nomura, H. Yanagi, and H. Hosono, “Interface electronic structures of zinc oxide and metals: First‐principle study,” physica status solidi (a), vol. 205, no. 8, pp. 1929-1933, 2008.
[56] a. X. L. Jian V. Li, Yanfa Yan, Chun-Sheng Jiang, Wyatt K. Metzger, Ingrid L. Repins, Miguel A. Contreras, and Dean H. Levi, “Influence of sputtering a ZnMgO window layer on the interface and bulk properties of Cu„In,Ga...Se2 solar cells,” J. Vac. Sci. Technol., vol. 27, no. 6, 2009.
[57] D. S. B. Heidary, W. Qu, and C. A. Randall, “Electrical characterization and analysis of the degradation of electrode Schottky barriers in BaTiO3 dielectric materials due to hydrogen exposure,” Journal of Applied Physics, vol. 117, no. 12, 2015.
[58] M. Garbrecht, I. McCarroll, L. Yang, V. Bhatia, B. Biswas, D. Rao, J. M. Cairney, and B. Saha, “Thermally stable epitaxial ZrN/carrier-compensated Sc0.99Mg0.01N metal/semiconductor multilayers for thermionic energy conversion,” Journal of Materials Science, vol. 55, no. 4, pp. 1592-1602, 2019.
[59] Z. L. Wang, “Piezopotential gated nanowire devices: Piezotronics and piezo- phototronics,” Nano Today, vol. 5, no. 6, pp. 540-552, 2010.
[60] Y. Zhang, Y. Liu, and Z. L. Wang, “Fundamental theory of piezotronics,” Adv Mater, vol. 23, no. 27, pp. 3004-13, Jul 19, 2011.
[61] C. Pan, M. Chen, R. Yu, Q. Yang, Y. Hu, Y. Zhang, and Z. L. Wang, “Progress in Piezo-Phototronic-Effect-Enhanced Light-Emitting Diodes and Pressure Imaging,” Adv Mater, vol. 28, no. 8, pp. 1535-52, Feb 24, 2016.
[62] K. Jenkins, V. Nguyen, R. Zhu, and R. Yang, “Piezotronic Effect: An Emerging Mechanism for Sensing Applications,” Sensors (Basel), vol. 15, no. 9, pp. 22914- 40, Sep 11, 2015.
[63] P. Lin, X. Yan, F. Li, J. Du, J. Meng, and Y. Zhang, “Polarity‐Dependent Piezotronic Effect and Controllable Transport Modulation of ZnO with Multifield Coupled Interface Engineering,” Advanced Materials Interfaces, vol. 4, no. 3, 2016.
[64] H. Kim, S. M. Kim, H. Son, H. Kim, B. Park, J. Ku, J. I. Sohn, K. Im, J. E. Jang, J.- J. Park, O. Kim, S. Cha, and Y. J. Park, “Enhancement of piezoelectricity via electrostatic effects on a textile platform,” Energy & Environmental Science, vol. 5, no. 10, 2012.
[65] Z. Pan, W. Peng, F. Li, and Y. He, “Carrier concentration-dependent piezotronic and piezo-phototronic effects in ZnO thin-film transistor,” Nano Energy, vol. 49, pp. 529-537, 2018.
[66] Y. Sun, S. Shen, W. Deng, G. Tian, D. Xiong, H. Zhang, T. Yang, S. Wang, J. Chen, and W. Yang, “Suppressing piezoelectric screening effect at atomic scale for enhanced piezoelectricity,” Nano Energy, vol. 105, 2023.
[67] A. Mahapatra, R. S. Ajimsha, and P. Misra, “Oxygen annealing induced enhancement in output characteristics of ZnO based flexible piezoelectric nanogenerators,” Journal of Alloys and Compounds, vol. 913, 2022.
[68] M. H. Mamat, S. W. A. Wan, M. Z. Musa, Z. Khusaimi, M. F. Malek, S. Muhamad, D. M. Sin, and M. Rusop, “Effect of Oxygen Flow Rate on the Properties of Nanocolumnar ZnO Thin Films Prepared Using Radio Frequency Magnetron Sputtering System for Ultraviolet Sensor Applications,” Advanced Materials Research, vol. 364, pp. 1-6, 2011.
[69] R. Kara, L. Mentar, and A. Azizi, “Synthesis and characterization of Mg-doped ZnO thin-films electrochemically grown on FTO substrates for optoelectronic applications,” RSC Adv, vol. 10, no. 66, pp. 40467-40479, Nov 2, 2020.
[70] J. B. You, X. W. Zhang, S. G. Zhang, H. R. Tan, J. Ying, Z. G. Yin, Q. S. Zhu, and P. K. Chu, “Electroluminescence behavior of ZnO/Si heterojunctions: Energy band alignment and interfacial microstructure,” Journal of Applied Physics, vol. 107, no. 8, 2010.
[71] S. Yedurkar, C. Maurya, and P. Mahanwar, “Biosynthesis of Zinc Oxide Nanoparticles Using Ixora Coccinea Leaf Extract—A Green Approach,” Open Journal of Synthesis Theory and Applications, vol. 05, no. 01, pp. 1-14, 2016.
[72] T. Kawashima, D. Abe, and K. Washio, “Investigation on a source of dominant donor in vanadium-doped ZnO films grown by reactive RF magnetron sputtering,” Materials Science in Semiconductor Processing, vol. 70, pp. 213-218, 2017.
[73] J.-M. Nunzi, H. Ftouhi, Z. El Jouad, M. Jbilou, M. Diani, M. Addou, R. Bennacer, M. El Ganaoui, and M. El Jouad, “Study of microstructural, morphological and optical properties of sprayed vanadium doped ZnO nanoparticles,” The European Physical Journal Applied Physics, vol. 87, no. 1, 2019.
[74] A. C. Gandhi, W. S. Yeoh, M. A. Wu, C. H. Liao, D. Y. Chiu, W. L. Yeh, and Y. L. Huang, “New Insights into the Role of Weak Electron(-)Phonon Coupling in Nanostructured ZnO Thin Films,” Nanomaterials (Basel), vol. 8, no. 8, Aug 20, 2018.
[75] M. Guc, D. Hariskos, L. Calvo-Barrio, P. Jackson, F. Oliva, P. Pistor, A. Perez- Rodriguez, and V. Izquierdo-Roca, “Resonant Raman scattering based approaches for the quantitative assessment of nanometric ZnMgO layers in high efficiency chalcogenide solar cells,” Sci Rep, vol. 7, no. 1, pp. 1144, Apr 25, 2017.
[76] L. Su, Y. Zhu, Y. An, J. Xie, and Z. Tang, “Alloying induced disorder and localized excitonic states in ternary BexZn1−xO thin films,” Journal of Alloys and Compounds, vol. 874, 2021.
[77] Y.-C. Wei, and L.-Y. Hsu, “Polaritonic Huang–Rhys Factor: Basic Concepts and Quantifying Light–Matter Interactions in Media,” The Journal of Physical Chemistry Letters, vol. 14, no. 9, pp. 2395-2401, 2023/03/09, 2023.
[78] A. Sahai, Y. Kumar, V. Agarwal, S. F. Olive-Méndez, and N. Goswami, “Doping concentration driven morphological evolution of Fe doped ZnO nanostructures,” Journal of Applied Physics, vol. 116, no. 16, 2014.
[79] “<Catalyst-free direct vapor-phase growth of Zn1−xCuxO micro-cross structures and their optical properties.pdf>.”
[80] M. G. Wardle, J. P. Goss, and P. R. Briddon, “First-principles study of the diffusion of hydrogen in ZnO,” Phys Rev Lett, vol. 96, no. 20, pp. 205504, May 26, 2006.
[81] K. Davis, R. Yarbrough, M. Froeschle, J. White, and H. Rathnayake, “Band gap engineered zinc oxide nanostructures via a sol-gel synthesis of solvent driven shape-controlled crystal growth,” RSC Adv, vol. 9, no. 26, pp. 14638-14648, May 9, 2019.
[82] A. Ciechan, and P. Boguslawski, “Theory of the sp-d coupling of transition metal impurities with free carriers in ZnO,” Sci Rep, vol. 11, no. 1, pp. 3848, Feb 15, 2021.
[83] Y.-J. Choi, K.-M. Kang, and H.-H. Park, “Anion-controlled passivation effect of the atomic layer deposited ZnO films by F substitution to O-related defects on the electronic band structure for transparent contact layer of solar cell applications,” Solar Energy Materials and Solar Cells, vol. 132, pp. 403-409, 2015.
[84] J. E. Whitten, “Ultraviolet photoelectron spectroscopy: Practical aspects and best practices,” Applied Surface Science Advances, vol. 13, 2023.
[85] G. M. Venugopal Santhanam, “Monodisperse Gold Nanoparticles: Synthesis, Self- assembly and Fabrication of Floating Gate Memory Devices,” 2015.
[86] L.-C. Cheng, S. Brahma, J.-L. Huang, and C.-P. Liu, “Enhanced piezoelectric coefficient and the piezoelectric nanogenerator output performance in Y-doped ZnO thin films,” Materials Science in Semiconductor Processing, vol. 146, 2022.
[87] Y. Sun, Y. Zheng, R. Wang, J. Fan, and Y. Liu, “Direct-current piezoelectric nanogenerator based on two-layer zinc oxide nanorod arrays with equal c-axis orientation for energy harvesting,” Chemical Engineering Journal, vol. 426, 2021.
[88] Y.-I. Kim, S. Cadars, R. Shayib, T. Proffen, C. S. Feigerle, B. F. Chmelka, and R. Seshadri, “Local structures of polar wurtzitesZn1−xMgxOstudied by Raman andZ67n/M25gNMR spectroscopies and by total neutron scattering,” Physical Review B, vol. 78, no. 19, 2008.
[89] D.-K. Hwang, M.-S. Oh, J.-H. Lim, and S.-J. Park, “ZnO thin films and light- emitting diodes,” Journal of Physics D: Applied Physics, vol. 40, no. 22, pp. R387- R412, 2007.
[90] J. T. Luo, X. Y. Zhu, B. Fan, F. Zeng, and F. Pan, “Microstructure and photoluminescence study of vanadium-doped ZnO films,” Journal of Physics D: Applied Physics, vol. 42, no. 11, 2009.
[91] Q. Yu, W. Fu, C. Yu, H. Yang, R. Wei, Y. Sui, S. Liu, Z. Liu, M. Li, G. Wang, C. Shao, Y. Liu, and G. Zou, “Structural, electrical and optical properties of yttrium- doped ZnO thin films prepared by sol–gel method,” Journal of Physics D: Applied Physics, vol. 40, no. 18, pp. 5592-5597, 2007.
[92] Jun Zhou, ‡ Yudong Gu,†,§ Peng Fei,†,§ Wenjie Mai,† Yifan Gao,† Rusen Yang,†, and a. Z. L. W. Gang Bao, “Flexible Piezotronic Strain Sensor,” Nano letters, vol. 8, no. 9, 2008.
[93] Y. Liu, Y. Zhang, Q. Yang, S. Niu, and Z. L. Wang, “Fundamental theories of piezotronics and piezo-phototronics,” Nano Energy, vol. 14, pp. 257-275, 2015.
[94] M. Heydari Gharahcheshmeh, and K. K. Gleason, “Recent Progress in Conjugated Conducting and Semiconducting Polymers for Energy Devices,” Energies, vol. 15, no. 10, 2022.
[95] A. Grillo, and A. Di Bartolomeo, “A Current–Voltage Model for Double Schottky Barrier Devices,” Advanced Electronic Materials, vol. 7, no. 2, 2020.
[96] N. Nikolaou, P. Dimitrakis, P. Normand, D. Skarlatos, K. Giannakopoulos, K. Mergia, V. Ioannou-Sougleridis, K. Kukli, J. Niinisto, K. Mizohata, M. Ritala, and M. Leskela, “Inert ambient annealing effect on MANOS capacitor memory characteristics,” Nanotechnology, vol. 26, no. 13, pp. 134004, Mar 27, 2015.
[97] W. Li, D. Saraswat, Y. Long, K. Nomoto, D. Jena, and H. G. Xing, “Near-ideal reverse leakage current and practical maximum electric field in β-Ga2O3 Schottky barrier diodes,” Applied Physics Letters, vol. 116, no. 19, 2020.
[98] J. Zhang, Y. Zhang, L. Li, W. Yan, H. Wang, W. Mao, Y. Cui, Y. Li, and X. Zhu, “Synergizing the internal electric field and ferroelectric polarization of the BiFeO3/ZnIn2S4 Z-scheme heterojunction for photocatalytic overall water splitting,” Journal of Materials Chemistry A, vol. 11, no. 1, pp. 434-446, 2023.
[99] H. Zhang, G. Tian, D. Xiong, T. Yang, S. Wang, Y. Sun, L. Jin, B. Lan, L. Deng, W. Yang, and W. Deng, “Carrier concentration-dependent interface engineering for high-performance zinc oxide piezoelectric device,” J Colloid Interface Sci, vol. 629, no. Pt A, pp. 534-540, Jan, 2023.
校內:2029-07-15公開