簡易檢索 / 詳目顯示

研究生: 張政柏
Chang, Cheng-Po
論文名稱: 鈀/磷化銦蕭特基二極體氫氣感測器之電泳製程研究
A study on Electrophoretic Fabrication of Pd/InP Schottky Diode Hydrogen Sensors
指導教授: 陳慧英
Chen, Huey-Ing
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 133
中文關鍵詞: 奈米微粒電泳沈積蕭特基二極體氫氣感測器
外文關鍵詞: nanoparticle, hydrogen sensor, electrophoretic deposition, Schottky diode
相關次數: 點閱:65下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係將鈀微粒以電泳法在磷化銦摻雜磊晶膜之基材上沈積鈀膜,以製備鈀蕭特基二極體作為氫氣感測器。論文首先探討電泳法之析鍍變因如何對於鈀膜微結構,及元件電性特性之影響。其次,針對氫氣濃度在50ppm-1%及溫度313K之操作範圍內,探討以鈀/磷化銦( Pd/InP,簡稱MS元件)以及鈀/氧化層/磷化銦( Pd/oxide/InP,簡稱MOS元件)之氫氣感測性能。文中並假設氫氣在元件上之吸附行為可由Temkin模式來描述及暫態響應之分析,可求出氫氣吸附之熱力學以及動力學參數。
    研究結果顯示,隨電泳時間之增長,鈀膜粒徑變大,且粒徑分佈變寬。當電泳時間分別為1,、2、 3h時,三元件(30V-1, 30V-2, 30V-3)所得蕭特基能障值(約650meV)皆很接近,但由於鈀膜表面30V-1元件閘極能提供的有效面積最大,故其感測靈敏度最佳。另外,當電泳之施加電壓由10V提高至20V時,氫氣感測靈敏度提升,但若繼續增加電壓至30V時,感測的靈敏度反而下降。進一步觀察鈀膜表面型態發現,當電泳電壓由10V提升至20V時,鈀膜緻密性提高,故表面可提供氫氣吸附之活性座數目增加; 但當電壓繼續提升到30V時,因為鈀膜粒徑變大,造成活性座數目減少,導致氫氣感測性能變差。由此可知,選擇適當的電泳電壓及沈積時間,可獲得最佳性能感測元件。由吸附分析結果可估算出10V-2,20V-2及30V-2三元件鈀膜之表面活性座數目分別為6.6x1013、3.3x1014、9.8x1013,其中以20V-2為最多,此與實驗結果相吻合。在暫態分析方面,發現氫氣在鈀膜表面上之吸附為一階反應,並求出各元件之活化能約為20.6 kJ mol-1。
    另外,比較MS與MOS Pd/InP元件之氫氣感測結果,發現MOS元件因氧化層之存在,可有效防止鈀磷化銦化合物之形成及費米能階釘住效應,故MOS元件之感測靈敏度較高。但因本研究中MOS元件之氧化層厚度不足且不完全緻密,因此對氫氣靈敏度並無大幅提升。

    In this study, the electrophoretic deposition (EPD) combining with Pd nanoparticles was employed to fabricate Pd/InP Schottky diodes as hydrogen sensors. Firstly, the effects of EPD variables including deposition time and applied voltage on the resulting surface morphologies and current-voltage (I-V) characteristics were investigated. Secondly, hydrogen sensing performances of the EPD Pd/InP (denoted as MS device) and Pd/oxide/InP (denoted as MOS device) were investigated under hydrogen concentrations of 50 ppm- 1% H2/air at 313 K. Assuming that the hydrogen sensing behavior could be described by the Temkin adsorption model, the thermodynamic and kinetic parameters were then estimated from the steady-state and transient detection analyses.
    From experimental results, it revealed that as the deposition time increased, not only the particle size of deposited Pd increased but also the size distribution of Pd particles became broader. From I-V characteristics analyzed by using the thermionic emission model, it was found that the Schottky barrier heights (SBHs) in air for three devices, 30V-1(EPD at 30V for 1 h), 30V-2 (EPD at 30V for 2 h), and 30V-3(EPD at 30V for 3 h) were very close (about 650meV). Especially, the 30V-1 device exhibited the highest hydrogen sensitivity, attributing from the largest effective surface area. Besides, as increasing the EPD applied voltage from 10V to 20V, the hydrogen sensitivity increased, whereas it was contrast decreased as the applied voltage was raised to 30V. To further observe the surface morphologies of the Pd gates, it illustrated the Pd layer became denser as the EPD voltage increased from 10Vto 20V. It resulted in the increase of number of active sites available for hydrogen adsorption. However, as the EPD voltage increased to 30V, the Pd grains enlarged which would result in the decrease of the number of active sites and then lowering the sensing sensitivity. Accordingly, tuning an appropriate conditions in the EPD process including deposition time and applied voltage were really essential for achieve an excellent sensing device.
    Furthermore, from results of Temkin model analyses, the numbers of adsorption sites for 10V-2, 20V-2, and 30V-2 devices were estimated as 6.6x1013, 3.3x1014, and 9.8x1013, respectively. It was noted that the 20V-2 device exhibited the highest sensitivity which showed a good agreement with that observed from the SEM observation. Moreover, from the results of transient detection, it revealed that the initial rate for hydrogen adsorption on the Pd surface obeyed first-order kinetic model, the activation energies for different studied devices were estimated around 20.6 kJ mol-1.
    As compared with the MS device, the MOS device exhibited higher hydrogen sensing sensitivity. This was inferred that the existence of oxide interlayer could prevent the formation of Pd-InP compounds and eliminate the Fermi-level pinning effect. However, due to the short thickness and poor denseness of oxide layer, the MOS device fabricated in this work did not show a large enhancement in hydrogen sensitivity.

    Page 誌謝 摘要……………………………………………………………………………... I ABSTRACT…………………………………………………………………….. III LIST OF CONTENTS…………………………………………………………... XIII LIST OF TABLES………………………………………………………………. XVI LIST OF FIGURES……………………………………………………………... XVIII LIST OF SYMBOLS XXV CHAPTER 1 INTRODUCTION……………………………………………... 1 1.1 Hydrogen sensor definition and requirements…………….. 1 1.2 Category of hydrogen sensors............................................... 2 1.2.1 Pyroelectric sensors………....................................... 2 1.2.2 Piezoelectric sensors………………………………. 3 1.2.3 Surface Acoustic wave detectors…………………... 3 1.2.4 Electrochemical sensors…………………………… 3 1.2.5 Semiconductor hydrogen sensors….......................... 4 1.3 Schottky diode Sensors……………………………….. 5 1.3.1 Development……………………………………... 5 1.3.2 Device structure improvements…………………… 5 1.3.3 Fabrication technique improvement…...................... 7 1.4 Motivation and Objectives………………………………… 9 CHAPTER 2 THEORETICAL………………………………………………. 16 2.1 Electrophoretic deposition process……………………… 16 2.1.1 Principle of electrophoretic depositionn…………... 16 2.2 Pd/InP diode characteristics…….......................................... 18 2.3 Hydrogen Detection Performance…………………………. 21 2.3.1 Hydrogen detection mechanism…………………… 21 2.3.2 Equilibrium adsorption analysis…………………… 22 2.3.2.1 Langmuir isotherm analysis……………………….. 22 2.3.2.2 Temkin isotherm analysis………………………….. 25 2.3.3 Transient-detection analysis……………………….. 27 CHAPTER3 EXPERIMENTAL Details…………………………………….. 32 3.1 Chemicals and Materials…………………………………... 32 3.2 Instruments and analysis…………………………………... 34 3.2.1 Analysis Instruments………………………………. 34 3.2.2 Apparatus………………………………………….. 34 3.3 Experiments……………………………………………… 35 3.3.1 Preparation of Pd nanoparticles…………………… 35 3.3.2 Fabrication of EPD Pd/InP diode………………….. 35 3.3.2.1 Device structure…………………………………… 35 3.3.2.2 Device fabrication…………………………………. 36 3.3.3 Hydrogen sensing measurements………………….. 39 3.3.3.1 System set up………………………………............ 39 3.3.3.2 Hydrogen sensing experiments……………………. 40 CHAPTER4 Influence of Electrophoretic Deposition on Sensing Performances of Pd/InP Schottky Diodes- Effect of deposition time…………………………………………………. 47 4.1 Analysis on EPD Pd/InP Schottky Diode…………………. 47 4.1.1.1 Surface morphologies of Pd gates…………………. 47 4.1.2 I-V Characteristics…………………………………. 47 4.2 Hydrogen detection performances………………………… 48 4.2.1 Steady-detection…………………………………… 48 4.2.2 Equilibrium adsorption analysis…………………… 51 4.2.3 Transient detection………………………………… 53 4.2.3.1 I-t responses……………………………………….. 53 4.2.3.2 Kinetic adsorption analysis………………………... 54 CHAPTER5 Influence of Electrophoretic Deposition on Sensing Performances of Pd/InP Schottky Diodes- Effect of Applied Voltage………………………………………………………….. 79 5.1 Analysis on EPD Pd/InP Schottky Diode…………………. 79 5.1.1 Characterization of Pd/InP Schottky Diode……….. 79 5.1.2 I-V Characteristics…………………………………. 79 5.2 Hydrogen detection performances………………… 80 5.2.1 Steady-detection…………………………………… 80 5.2.2 Equilibrium adsorption analysis…………………... 81 5.2.3 Transient detection………………………………… 83 5.2.3.1 I-t responses……………………………………….. 83 5.2.3.2 Kinetic adsorption analysis………………………... 83 CHAPTER 6 Sensing performance of MOS structure Pd/InP Schottky Diodes…………………………………………………………… 96 6.1 Pd/InP interface characterization………………………….. 96 6.2 Steady-State detection……………………………………... 96 6.3 Transient detection………………………………………… 98 6.3.1 I-t responses……………………………………….. 98 6.4 Comparison of MOS with MS Pd/InP Schottky diodes by Electrphoretic Deposition…………………………………. 98 6.4.1 Steady-State detection…………………………….. 98 6.4.2 Equilibrium adsorption analysis…………………… 100 6.4.2.1 Langmuir isotherm analysis……………………….. 100 6.4.3 Transient detection………………………………… 100 6.4.3.1 I-t responses……………………………………….. 100 6.4.3.2 Kinetic adsorption analysis………………………... 101 CHAPTER 7 Conclusions and Suggestions………………………………….. 116 7.1 Conclusion………………………………………………… 116 7.2 Suggestions………………………………………………... 118 References …………………………………………………………………... 119 自述 LIST OF TABLES Page Table 1.1 Example of physical change for chemical gas sensors.. 10 Table 1.2 The dependences of operating temperature and semiconductor substrates………………………………. 11 Table 1.3 The ΦBn values and operating range values for different Pd/InP diodes………………………………………….. 12 Table 1.4 Models for Fermi level pinning………………………… 13 Table 2.1 Work functions of some important metals……………… 29 Table 3.1 The composition of reverse micellar solutions……….... 42 Table 4.1 Comparison of ΦBn, thickness and particle size for different deposition time……………………………….. 56 Table 4.2 Values of ΦBn and Rs for various devices………………. 56 Table 4.3 The ΔHio,H2 and Ns values estimated from Temkin model…………………………………………………… 56 Table 4.4 The kinetic parameters for hydrogen adsorption on EPD sensor diodes obtained from different deposition times... 57 Table 4.5 The response and recovery time for the Pd/InP sensor device fabricated with different deposition times………. 58 Table 5.1 The ΔHio,H2 and Ns values estimated from Temkin model…………………………………………………… 84 Table 5.2 The kinetic parameters for hydrogen adsorption on EPD sensor diodes at 313K………………………………….. 84 Table 5.3 The response and recovery time for the Pd/InP sensor device with different applied voltages………………….. 85 Table 6.1 The response and recovery time for the Pd/InP sensor device with different structures…………………………. 102 LIST OF FIGURES Page Figure 1.1 The basic unit of chemical sensor…………………… 14 Figure 1.2 Typical Electrochemical Sensor Setup………………… 14 Figure 1.3 Classification of field effect based gas sensor………… 15 Figure 2.1 The band diagram of metal-semiconductor (a) before contact (b)after contact.................................................. 30 Figure 2.2 The band diagrams of metal-semiconductor (a) in absence and (b) after in presence of hydrogen, respectively……………………………………………. 31 Figure 3.1 Device structure of studied Pd/InP Schottky hydrogen sensor diode…………………………………………… 43 Figure 3.2 Schematic flowchart for fabrication of the EPD Pd/InP Schottky diode…………………………………………. 44 Figure 3.3 The schematic plot of the hydrogen sensing system…... 45 Figure 3.4 The schematic plot of the Electrophoretic deposition system………………………………………………….. 46 Figure 4.1 The SEM images of the Pd/InP diodes fabricated under different conditions. (a~c) top-views, (d~f) side-views.. 60 Figure 4.2 Effect of deposition time on I-V characteristics of Pd/InP EPD devices…..……………………………….. 61 Figure 4.3 The I-V modulation of the EPD device exposed to different hydrogen concentrations. Detection temperature = (a) 303 K, (b) 313 K and (c) 323 K……. 62 Figure 4.4 The I-V modulation of the EPD device exposed to different hydrogen concentrations. Detection temperature = (a) 303 K, (b) 313 K and (c) 323 K……. 63 Figure 4.5 The I-V modulation of the EPD device exposed to different hydrogen concentrations. Detection temperature = (a) 303 K, (b) 313 K and (c) 323 K……. 64 Figure 4.6 Effect of hydrogen concentration on Schottky barrier and Schottky barrier height lowering of the Pd/InP Schottky diodes with different deposition time. Detection temperature = (a) 303 K, (b) 313 K and (c) 323 K…………………………………………………... 65 Figure 4.7 Effect of deposition time of Pd gates on the relative sensitivities of Pd/InP Schottky diodes. Forward bias = (a) V= 0.4 V, (b) V= 0.8 V, (c) V= 1.2 V……………… 66 Figure 4.8 Effect of deposition time of Pd gates on the relative sensitivities of Pd/InP Schottky diodes. Reverse bias = (a) V= -0.1 V, (b) V= -0.2 V, (c) V= -0.4 V…………… 67 Figure 4.9 Plots of versus for Pd/InP Schottky diode with different deposition time. Detection temperature = (a) 303 K, (b) 313 K and (c) 323 K………………………………………………….. 68 Figure 4.10 Dependence of equilibrium constant on the detection temperature for various Pd/InP Schottky diodes………. 69 Figure 4.11 The dependence of SBH lowering on hydrogen pressure for various EPD diodes………………………. 70 Figure 4.12 Transient detections of the Pd/InP Schottky diodes. Detection temperature = (a) 303 K, (b) 313 K and (c) 323 K. EPD applied voltage = 30 V, Deposition time = 1hr……………………………………………………... 71 Figure 4.13 Transient detections of the Pd/InP Schottky diodes. Detection temperature = (a) 303 K, (b) 313 K and (c) 323 K. EPD applied voltage = 30 V, Deposition time = 2hr……………………………………………………... 72 Figure 4.14 Transient detections of the Pd/InP Schottky diodes. Detection temperature = (a) 303 K, (b) 313 K and (c) 323 K. EPD applied voltage = 30 V, Deposition time = 3hr……………………………………………………... 73 Figure 4.15 Comparison of various Pd/InP Schottky diodes. Detection temperature = (a) 303 K, (b) 313 K and (c) 323 K. EPD applied voltage = 30 V, Hydrogen Concentration : 1% H2/air…………………………….. 74 Figure 4.16 The dependences of ln{1-[ln(Iog/Io)/ln(Iog,max/Io)]} on detection time for various hydrogen concentrations. Detection temperature = (a) 303 K, (b) 313 K and (c) 323 K.EPD applied voltage = 30 V, Deposition time = 1hr……………………………………………………... 75 Figure 4.17 The dependences of ln{1-[ln(Iog/Io)/ln(Iog,max/Io)]} on detection time for various hydrogen concentrations. Detection temperature = (a) 303 K, (b) 313 K and (c) 323 K. EPD applied voltage = 30 V, Deposition time = 2hr…………………………………………………… 76 Figure 4.18 The dependences of ln{1-[ln(Iog/Io)/ln(Iog,max/Io)]} on detection time for various hydrogen concentrations. Detection temperature = (a) 303 K, (b) 313 K and (c) 323 K. EPD applied voltage = 30 V, Deposition time = 3hr…………………………………………………….. 77 Figure 4.19 The dependence of rate constant on the reciprocal of temperature for various hydrogen concentrations…….. 78 Figure 5.1 The SEM images of the Pd/InP diodes fabricated under different conditions. (a~c) top-views, (d~f) side-views.. 86 Figure 5.2 The I-V characteristics of Pd/InP EPD devices fabricated with different EPD voltages……………….. 87 Figure 5.3 The I-V modulation of Pd/InP Schottky diodes fabricated with different EPD applied voltages exposed to hydrogen. EPD voltage = (a) 10V, (b) 20V, (c) 30V... 88 Figure 5.4 Dependence of SBH lowering on the hydrogen concentration for EPD diodes fabricated with different EPD voltages. Detection temperature= 313 K………… 89 Figure 5.5 Effect of hydrogen concentration on sensitivity of Pd/InP Schottky diode fabricated with different EPD voltages at 313K. Applied bias = (a) 0.4V, (b) 0.6V, (c) 0,8V, (d) -0.1V, (e) -0.2V, (f) -0.4V…………………… 90 Figure 5.6 Plots of versus for Pd/InP Schottky diodes fabricated with different EPD voltages………………………………………………... 91 Figure 5.7 The dependence of SBH lowering on hydrogen pressure for EPD diodes fabricated with different EPD voltages. Detection temperature= 313 K……………… 92 Figure 5.8 Transient detections of the Pd/InP Schottky diodes fabricated with different EPD voltages exposed to hydrogen at 313K. (a)10V-2, (b)20V-2, (c)30V-2. Deposition time = 2hr…………………………………. 93 Figure 5.9 Plots of ln{1-[ln(Iog/Io)/ln(Iog,max/Io)]} versus time at various hydrogen concentrations. (a)10V-2, (b)20V-2, (c)30V-2. Deposition time = 2hr………………………. 94 Figure 5.10 The dependence of rate constant on the reciprocal of temperature for various Pd/InP Schottky diodes fabricated with different EPD voltages………………... 95 Figure 6.1 Auger depth profiles of MOS Pd/InP Schottky diode fabricated by EPD……………………………………... 103 Figure 6.2 The I-V modulation of the MOS Pd/InP Schottky diode exposed to hydrogen at 313K…………………………. 104 Figure 6.3 The Schottky barrier height and its variation of MOS Pd/InP Schottky diode under various hydrogen concentrations at 313K………………………………… 105 Figure 6.4 Effect of hydrogen concentration on sensitivity of MOS Pd/InP Schottky diode at 313K. Applied bias = (a)forward bias, (b) reverse bias………………………. 106 Figure 6.5 The transient responses of MOS Pd/InP Schottky diode at 303, 313, 323, 333K, respectively…………………... 107 Figure 6.6 Plots ln{1-[ln(Iog/Io)/ln(Iog,max/Io)]} versus time of MOS Pd/InP Schottky diode for detection of 1% H2/air at different detection temperatures………………………. 108 Figure 6.7 Comparison of I-V modulations between MS and MOS Pd/InP Schottky diodes at different hydrogen concentrations at (a) forward bias, (b) reverse bias. Detection temperature= 313 K………………………… 109 Figure 6.8 Comparison of SBH between MS and MOS Pd/InP Schottky diodes at different hydrogen concentrations. Detection temperature= 313 K………………………… 110 Figure 6.9 Comparison of the SBH lowering between MS and MOS Pd/InP Schottky diodes at different hydrogen concentrations. Detection temperature= 313 K………... 111 Figure 6.10 Comparison of relative sensitivity between MS and MOS Pd/InP Schottky diodes at different hydrogen concentrations.at (a) forward bias, (b) reverse bias. Detection temperature= 313 K………………………… 112 Figure 6.11 Plots of 1/ln(Iog/Io) versus PH2-0.5 for MS and MOS Pd/InP Schottky diodes at 313 K………………………. 113 Figure 6.12 Transient detections of (a) MOS 30V-2 and (b) MS 30V-2 devices exposed to different hydrogen concentrations at 313 K……………………………….. 114 Figure 6.13 Plots of lnk versus the response detection temperature for MOS and MS Pd/InP Schottky diodes…………….. 115 LIST OF SYMBOLS Effective Richardson constant (9.24 A K-2cm-2 for InP) c Solid concentration (kg m-3) E Electric field in electrophoresis (V m-1) Ea Activation energy (kJ mole-1) Bandgap of semiconductor (V) f Factor, defined in equation (2.1) Hydrogen molecular flux impinging towards Pd surface (m-2 sec-1) Standard Gibbs energy change for hydrogen molecule adsorbing at Pd-InP interface (kJ mole-1) Standard adsorption heat for hydrogen molecule adsorbing at Pd-InP interface (kJ mole-1) Hydrogen molecule adsorption heat on Pd surface (kJ mole-1) Hydrogen molecule adsorption heat at Pd-InP interface (kJ mole-1) Initial adsorption heat of hydrogen at Pd-InP interface (kJ mole-1) Reverse saturation current density (A cm-2) I0g Reverse saturation current density with hydrogen adsorption (A cm-2) I0g, max Maximum reverse saturation current density with hydrogen adsorption (A cm-2) I Current density (A cm-2) K Equilibrium constant (torr-1) m Constant, defined in (2.23) n Constant, defined in (2.24) k Boltzmann’s constant (8.26×10-5J K-1) k’ Rate constant for hydrogen adsorbing on Pd surface (sec-1) kr Rate constant (torr-1 sec-1) k0 Pre-exponential factor (sec-1) M The mass of the hydrogen molecule (2×10-3 kg) Available hydrogen adsorption sites on Pd surface (m-2) Available hydrogen adsorption sites on Pd-InP interface (m-2) Transient states in the Pd bulk (m-2) n Ideality factor Hydrogen partial pressure (torr) R Ideal gas constant (8.314 J mol-1K-1) s Sticking coefficient ΔSo Standard entropy change for hydrogen molecule adsorbing at Pd-InP interface (J mole-1K-1) S Relative sensitivity T Temperature (K) V Applied bias (V) Built-in voltage (V) Y Deposition weight per unit area (kg m-2) Wo The molar ratio of water and surfactant W Depletion layer width (cm) χs Electron affinity of semiconductor (V) Rate constant for hydrogen atom adsorbed at Pd-InP (sec-1) Rate constant for hydrogen atom desorbe from Pd-InP (sec-1) Frequency of H adsorbate vibration (sec-1) Surface hydrogen coverage Interfacial hydrogen coverage ΦBn Schottky barrier height (V) φm Metal work function (V) φs Semiconductor work function (V) ΦT kT/q (V) ΔΦBn Schottky barrier lowering potential (V) ΔΦBn,max Maximum Schottky barrier lowering potential (V) μ Electrophoretic mobility (m-2V-1S-1) τresponse Response time (sec) τrecovery Recovery time (sec) I 0H2 Currents measured under hydrogen-contained ambience I 0air Currents measured under hydrogen-contained air

    1. E. F. P. Vaz de Campos, “The integration of hydrogen technologies with the energy utilities,” Int. J. Hydrogen Energy 12, 847 (1987).
    2. R. C. Weast, in Handbook of Chemistry and Physics (CRC, Cleveland, 1976), p. D-107.
    3. T. M. Canh, “Biosnesors,” ch 1, London: Champman & Hall (1993).
    4. L. Ristic, “Sensor technology and devices,” ch 1, Boston: Artech House (1994).
    5. J. N. Zemel, B. Keramati, C. W. Spivak, and A. D’Amico, “Non-FET Chemical Sensors,” Sens. Actuators 1, 427 (1981).
    6. G. Z. Sauerbrey, “Verwendung von Schwingquarsen zur Wängung dünner Schichten und zur Mikrowängung,” Z. Phys. 155, 206 (1959).
    7. H. Wohltjen, “Mechanism of operation and design considerations for surface acoustic wave device vapour sensors,” Sens. Actuators, 5, 307 (1984).
    8. H. Wohltjen, A. Snow, and D. Ballantine, “The selective detection of vapors using surface acoustic wave devices,” in Proceedings of the 1985 IEEE Ultrasonics Symposium (IEEE, San Francisco, 1985, p. 66.
    9. K. I. Lundstrőm, “Hydrogen sensitive mos-structures Part 1: Principles and applications,” Sens and Actuators 1, 403 (1981).
    10. K. I. Lundstrőm, “M. S. Shivaraman, and C. M. Svensson, “A hydrogen-sensitive Pd-gate MOS transistor,” J Appl. Phys., 46, 3876 (1975).
    11. T. C. McGill, “Phenomenology of metal-semiconductor electrical barriers, “Phenomenology of metal-semiconductor electrical barriers,” J. Vac. Sci. Technol., 11, 935 (1974).
    12. L. L. Tongson, B. E. Knox, T. E. Sullivan, and S. J. Fonash, “Comparative study of chemical and polarization characteristics of Pd/Si and Pd/SiOx/Si Schottky-barrier-type devices,” J. Appl. Phys., 50, 1535 (1979).
    13. S. T. Pantelides, “The Physics of SiO2 and Its Interface,” New York: Pergamon (1978).
    14. M. C. Petty, “Hydrogen-induced DLTS signal in Pd/normal-Si Schottky diodes,” Electron. Lett., 18, 314 (1982).
    15. M. C. Petty, “Conduction mechanism in Pd/SiO2/n-Si Schottky diode hydrogen detectors, ” Solid-State Electron., 29, 89 (1986).
    16. D. X. Dai and I Dvoli, “Experimental study of an interface reaction at the practical Pd/Si interface by XPS,” Vacuum, 46, 139 (1995).
    17. K. Homma, T. Koike, S. Ando, K. Adachi, and M. Motohashi, “Interfacial reaction and silicide formation in Pd/a-Si:H layered films,” Electronics & Communication in Japan, Part II: Electronics, 80, 12 (1997).
    18. K. Ito, “Hydrogen-sensitive Schottky-barrier diodes,” Surf. Sci., 86, 345 (1979).
    19. M. C. Steele and B. A. MacIver, “Palladium/cadmium-sulfide Schottky diodes for hydrogen detection,” Appl. Phys. Lett., 47, 687 (1976).
    20. N. Yamamoto, S. Tonomura, T. Matsuka and H. Tsubomura, “A study on a palladium-titanium oxide Schottky diode as a detector for gaseous components,” Surf. Sci., 92, 400 (1980).
    21. H. Kobayashi, K. Kishimoto, and Y. Nakato, “Reactions of hydrogen at the interface of palladium-titanium dioxide Schottky diodes as hydrogen sensors, studied by workfunction and electrical characteristic measurements,” Surf. Sci., 306, 393 (1994).
    22. H. Miyazaki, T. Hyodo, Y. Shimizu, M. Egashira, “Hydrogen-sensing properties of anodically oxidized TiO2 film sensors Effects of preparation and pretreatment conditions,” Sens. Actuators B, 108, 467 (2005).
    23. Y. Shimizu, T. Hyodo, H. Miyazaki, “H2 sensing performance of anodically oxidized TiO2 thin film equipped with Pd electrode,” Sens. Actuators B, 121, 219 (2007).
    24. L. M. Lechuga, A. Calle, D. Golmayo, P. Tejedor, and F. Briones, “A new hydrogen sensor based on Pt/GaAs Schottky diode,” Sens. Acurators B, 4, 515 (1991).
    25. L. M. Lechuga, A. Calle, D. Golmayo, and F. Briones, “A new hydrogen sensor based on a Pt/GaAs Schottky diode,” J. Electrochem. Soc., 138, 159 (1991).
    26. W. C. Liu, H. J. Pan, H. I. Chen, K. W. Lin, and C. K. Wang, “Comparative hydrogen-sensing study of Pd/GaAs and InP MOS Schottky diodes,” Jpan. J. Appl. Phys., 40, 6254 (2001).
    27. S. Y. Cheng, “A hydrogen sensitive Pd/GaAs Schottky diode sensor,” Mater. Chem. Phys., 78, 525 (2003).
    28. A. Salehi, A. Nikfarjam, D. J. Kalantari, “Pd/porous-GaAs Schottky contact for hydrogen sensing application,” Sens. Acurators B, 113, 419 (2007).
    29. B. B. Kuliev, B. Lalevic, M. Yousuf, and D. M. Safarov, “New hydrogen-sensitive metal-InP diode,” Sov. Phys. Semicond., 17, 875 (1983).
    30. W. C. Liu, H. J. Pan, H. I. Chen, K. W. Lin, C. Y. Chen, and K. H. Yu, “Hydrogen-sensitive characteristics of a novel Pd/InP MOS Schottky diode hydrogen sensor,” IEEE Trans. Electron Devices, 48, 1938 (2001).
    31. H. J. Pan, K. W. Lin, K. H. Yu, C. C. Cheng, K. B. Thei, W. C. Liu, and H. I. Chen, “Highly hydrogen-sensitive Pd/InP metal oxide-semiconductor Schottky diode hydrogen sensor,” Electron. Lett., 38, 1938 (2002).
    32. L. Talazac, F. Barbarin, L. Mazet, and C. Varenne, “Improvement in sensitivity and selectivity of InP-based gas sensors pseudo- Schottky diodes with palladium metallizations,” IEEE Sens. J., 4, 45 (2004).
    33. K. W. Lin, H. I. Chen, C. T. Lu, Y. Y. Tsai, H. M. Chuang, C. Y. Chen, and W .C. Liu, “A hydrogen sensing Pd/InGaP metal-semiconductor Schottky diode hydrogen sensor,” Semicond. Sci. Technol., 18, 615 (2003).
    34. Y. Y. Tsai, K. W. Lin, H. I. Chen, C. T. Lu, H. M. Chuang , C. Y. Chen, and W. C. Liu, “Comparative hydrogen sensing performances of Pd- and Pt-InGaP metal-oxide-semiconductor Schottky diodes,” J. Vac. Sci. Technol. B, 21, 2471 (2003).
    35. K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, C. T. Lu, C. C. Cheng, and W. C. Liu, “Characteristics of Pd/InGaP Schottky diodes hydrogen sensors,” IEEE Sens. J., 4, 72 (2004).
    36. Y. Y. Tsai, K. W. Lin, C. T. Lu, H. I. Chen, H. M. Chuang, C. Y. Chen, C. C. Chen, and W. C. Liu, “Investigation of hydrogen-sensing properties of Pd/AlGaAs-based Schottky diodes,” IEEE Trans. Electron Devices, 50, 2532 (2003).
    37. C. C. Chen, Y. Y. Tsai, K. W. Lin, H. I. Chen, C. T. Lu, and W. C. Liu, “Hydrogen sensing characteristics of a Pt-oxide-Al0.3Ga0.7As MOS Schottky diode,” Sens. Actuator B-Chem., 99, 425 (2004).
    38. M. P. Sinha and S. Mahapatra, “Diffusion of Pd in GaAs,” Vacuum, 40, 239 (1990).
    39. G. Stremsdoerfer, D. Nguyen, N. Jafferzic-Renault, J. T. Martin, and P. Clechet, “Contact reactions in Pd/n-GaAs junctions formed by palladium electroless deposition,” J. Electrochem. Soc., 140, 519 (1993).
    40. T. S. Huang and J. G. Pang, “Thermal stability of the pd-Al alloy Schottky of contacts to n-GaAs,” Mater. Sci. Eng. B, 49, 144 (1997).
    41. H. Iwakuro, S. Tamaki, D. H. Shen, Z. Lin, and T. Kuroda, “Interfacial reactions of Pd and Pd/Si on GaAs,” Phys. Status Solidi A-Appl. Res., 164, 757 (1997).
    42. H. Iwakuro, T. Kuroda, D. H. Shen, and H. Yagi, “Interactions of thin films of Pd and Pd/Si on GaAs: An X-ray photoelectron spectroscopic study combined with a thermodynamic analysis,” J. Mater. Sci., 33, 379 (1998).
    43. H. Y. Nie and Y. Nannichi, “Pd-on GaAs Schottky contact: Its barrier height and response to hydrogen,” Jpan. J. Appl. Phys., 30, 906 (1991).
    44. G. W. Hunter, P. G. Neudeck, L. Y. Chen, D. Knight, C. C. Liu, and O. H. Wu, “Silicon carbide-based detection of hydrogen and hydrocarbons,” Silicon carbide and related materials, 142, 817 (1996).
    45. L. Y. Chen, G. W. Hunter, P. G. Neudeck, G. Bansal, J. B. Petit, and D. Knight, “Comparison of interfacial and electronic properties of annealed Pd/SiC and Pd/SiO2/SiC Schottky diode sensors,” J. Vac. Sci. Technol. A, 15, 1228 (1997).
    46. C. K. Kim, J. H. Lee, Y.H. Lee, N. I. Cho, D. J. Kim, and W. P. Kang, “Hydrogen sensing characteristics of Pd-SiC Schottky diode operating at high temperature,” J. Electron. Mater., 28, 202 (1999).
    47. C. K. Kim, J. H. Lee, S. M. Choi, I. H. Noh, H. R. Kim, N. I. Cho, C. Hong, and G. E. Jang, “Pd- and Pt-SiC Schottky diodes for detection o H2 and CH4 at high temperature,” Sens, Actuator B-Chem., 77, 455 (2001).
    48. F. Serina, K. Y. S. Ng, C. Huang, G. W. Auner, L. Rimai, and R. Naik, “Pd/AlN/SiC thin-film devices for selective hydrogen sensing,” J. Appl. Phys., 79, 3350 (2001).
    49. S. Roy, C. Jacob, C. Lang, and S. Bassu, “Studies on Ru/3C-SiC Schottly junctions for high temperature hydrogen sensors,” J. Electrochem. Soc., 150, H135 (2003).
    50. S. Roy, C. Jacob, C. Lang and S. Bassu, “Studies on Pd/3C-SiC Schottky junction hydrogen sensors at high temperature,” Sens. Actuator B-Chem., 94, 298 (2003).
    51. B. P. Luther, S. D. Wolter, and S. E. Mohney, “High temperature Pt Schottly diode gas sensors on n-type GaN,” Sens. Actuator B-Chem., 56, 164 (1999).
    52. J. Kim, F. Ren, B. P. Gila, C. Abernathy, and S. J. Pearton, “Reversible barrier height changes in hydrogen-sensitive Pd/GaN and Pt/GaN diodes,” J. Appl. Phys., 82, 739 (2003).
    53. J. Kim, B. P. Gila, G. Y. Chung, C. R. Abernathy, S. J. Pearton, and F. Ren, “Hydrogen-sensitive GaN Schottly diodes,” Solid-state Electron., 47, 1069 (2003).
    54. O. Weidemann, M. Hermann, G. Steinhoff, H. Wingbrant, A. L. Spetz, M. Stutzmann, and M. Eickhoff, “Influence of surface oxides on hydrogen-sensitive Pd : GaN Schottky diodes,” Appl. Phys. Lett., 83, 773 (2003).
    55. M. Ali., V. Cimalla, V. Lebedev, H. Romanus, V. Tilak, D. Merfeld, P. Sandvik, and O. Ambacher, ”Pt/GaN Schottky diodes for hydrogen gas sensors,” Sens. Actuator B-Chem., 113, 797 (2006).
    56. Y. M. Wong, W. P. Kang, J. L. Davidson, A. Wisitsora-at, and K. L. Soh, “A novel microelectronic gas sensor utilizing carbon nanotubes for hydrogen gas detection,” Sens. Actuator B-Chem., 93, 327 (2003).
    57. R. C. Huges, “Hydrogen sensitive Schottky diodes with Pd/Ag alloys,” J. Electrochem. Soc., 31, C322 (1984).
    58. L. M. Lechuga, A. Calle, D. Golmayo, P. Tejedor, and F. Briones, “A new Hydrogen sensor based on a Pt/GaAs Schottky diode,” J. Electrochem. Soc., 138, 159 (1991).
    59. L. M. Lechuga, A. Calle, D. Golmayo, and F. Briones, “Hudrogen sensor based on a Pt/GaAs Schottky diode,” Sens. Actuator B-Chem., 4, 551 (1991).
    60. A. Oriz, S. Lopez, J. C. Alonso, and S. Muhl, “Hydrogen-sensitive Ni-SiO2 a-Si-H Schottky diodes,” Thin Solid Films, 207, 279 (1992).
    61. H. Nienhaus, H. S. Bergh, B. Gergen, A. Majumdar, W. H. Weinberg, and E. V. McFarland, “Ultrathin Cu fims on Si(111): Schottky barrier formation and sensor applications,” J. Vac. Sci. Technol. A, 17, 1683 (1999).
    62. H. Nienhaus, H. S. Bergh, B. Gergen, A. Majumdar, W. H. Weinberg, and E. V. McFarland, “Selective H atom sensors using ultrathin Ag-Si Schottky diodes,” Appl. Phys. Lett., 74, 4046 (1999).
    63. J. Liu, G. R. Oritz, Y. Zhang, H. Bakhru, and J. W. Corbett, “Effects of hydrogen on the barrier heigh of a titanium Schottky diode on p-type silicon,” Phys. Rev. B, 44, 8918 (1991).
    64. S. X. Jin, L. P. Wang, M. H. Yuan, J. J. Chen, Y. Q. Jia, and G. G. Jia, “Effects of hudrogen on the Schottky-barrier of Ti/n-GaAs diodes,” J. Appl. Pys., 71, 539 (1992).
    65. L. M. Lechuga, A. Calle, D. Golmayo, and F. Briones, “Different catalytic metals (Pt, Pd and Ir) for GaAs Schottky-barrier sensors,” Sens. Actuator. B-Chem., 7, 614 (1992).
    66. Y. Q. Jia and G. G. Qin, “Effects of hydrogen on Al/P-Si Schottky diodes,” Appl. Phys. Lett., 56, 641 (1990).
    67. D. E. Aspnes and A. Heller, “Barrier height and leakage reduction in n-GaAs-platinum group metal Schottky barriers upon exposure to hydrogen,” J.Vac. Sci. Technol. B, 1, 602 (1983).
    68. D. Pavlidis, G. Zhao, S. Hubbard, and J. Schwank, “Improvement of CO sensitivity in GaN-based gas sensors, ” IEICE. T. Electron., E89-C, 1047 (2006).
    69. W. E. Spicer, P. W. Chye, P. R. Skeath, C. Y. Su and I Lindau: J. Vac. Sci Technol. 16, 1422, 1979.
    70. V. Heine, “Theory of surface states,” Phy. Rev., 138, A1689 (1965).
    71. J. Tersoff, “Schottky barrier heights and the continuum of gap states,” Phy. Rev. Lett., 52, 465 (1984).
    72. H. Hasegawa and H. Ohno, “Unified disorder induced gap state model for insulator–semiconductor and metal–semiconductor interfaces,” J.Vac. Sci. Technol. B, 4, 1130 (1986).
    73. J. M. Woodall and J. L. Freeouf, “GaAs metallization: Some problems and trends,” J.Vac. Sci. Technol., 19, 794 (1981).
    74. Z. Q. Shi and W. A. Anderson, “MIS diode on n-InP having improved interface,” Solid-State Electron., 34, 285 (1991).
    75. W. C. Liu, H. J. Pan, H. I. Chen, K. W. Lin, S. Y. Cheng, and K. H. Yu, “Hydrogen- sensitive characteristics of a novel Pd/InP MOS Schottky diode hydrogen sensor,” IEEE Trans. Electron Devices, 48, 1938 (2001).
    76. K. W. Lin, H. I. Chen, C. C. Cheng, H. M. Chuang, C. R. Lu, S. Y. Cheng K. H. Yu, and W. C. Liu, “Characteristics of a new Pt/oxide/In0.49Ga0.51P hydrogen- sensing Schottky diode,” Sens. Acuators B, 94, 145 (2003).
    77. W. C. Liu, K. W. Lin, H. I. Chen C. K. Wang, C. C. Cheng, S. Y. Cheng, and C. T. Lu, “A new Pt/oxdide/ In0.49Ga0.51P MOS Schottky diode hydrogen sensor,” IEEE Electron Device Lett., 23, 640 (2002).
    78. C. R. Lu, K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A new Pd-oxide-Al0.3Ga0.7As MOS hydrogen sensor,” IEEE Electorn Device Lett., 24, 390 (2003).
    79. W. C. Liu, H. J. Pan, H. I. Chen, K. W. Lin, and C. K. Wang, “Comparative hydrogen sensing study of Pd/GaAs and Pd/InP metal–oxide-semiconductor Schottky diodes,” Jppn. J. Appl. Phys., 40, 6254 (2001).
    80. G. Eftekhari, “Electrical characteristics of selenium-trated GaAs MIS Sxhottky diodes,” Semicond. Sci. Technol. 8, 409 (1993).
    81. Z. Q. Shi, R. L. Wallace and W.A. Anderson, “High-barrier height Schottky diodes on N-InP by deposition on cooled substrates,” Appl. Phys. Lett., 59, 446 (1991).
    82. Y. G. Wang and S. Ashok, ”Plasma passivation of gallium arsenide,” J.Vac. Sci. Technol. A, 11, 1094 (1993).
    83. T. Kimura, H. Hasegawa, T. Sato and T. Hashizume, ”Sensing mechanism of InP Hydrogen Sensors Using Pt Schottky Diodes Formed by Electrochemical Process,” Jpan. J. Appl. Phys., 45, 3414 (2006).
    84. S. Uno, T. Hashizume, S. Kasai, N. J. Wu, and H. Hasegawa, “0.86 eV Platinum Schottky barrier on Indium Phosphide by in situ electrochemical process and its application to MESFET,” Jpn. J. Appl. Phys., 35, 1258 (1996).
    85. H. I. Chen, C. K. Hsiung, Y. I. Chou, “Characterization of Pd-GaAs Schottky diodes prepared by the electroless plating technique,” Semicond. Sci. Technol., 18, 620 (2003).
    86. H. I. Chen, Y. I. Chou, and C. Y. Chu, “A novel high-sensitive Pd/InP hydrogen sensor fabricated by electroless plating,” Sens. Acurators B, 85, 10 (2002).
    87. H. I. Chen and Y. I. Chou, “A comparative study of hydrogen sensing performances between electroless plated and thermal evaporated Pd/InP Schottky diode,” Semicond. Sci. Technol., 18, 104 (2003).
    88. 熊健剛,無電鍍鈀/砷化鎵式氫氣感測器之製備及氫氣感測研究,國立成功大學化學工程學系碩士論文 (2003).
    89. Y. I. Chou, C M Chen, W. C. Liu, “A New Pd-InP Schottky Hydrogen Sensor Fabricated by Electrophoretic Deposition With Pd Nanoparticles,” IEEE Electron Device Lett., 26, 62 (2005).
    90. 周彥伊,鈀/磷化銦蕭特基二極體氫氣感測器之製備、特性分析及感測研究,國立成功大學化學工程學系博士論文 (2005)
    91. H. C. Hamaker, E. J. W. Verwey “Rolle der Krfifte zwisehen den Teilchen beim elek-. trischen Niederschlag und anderen Phinomenen,” Trans. Farad. Soc. 36 180 (1940)
    92. H. Koelmans and J. Th. G. Overbeek, “Stability and Electrophoretic Deposition of Suspensions in Non-aqueous Media,’’ Discuss. Faraday Soc., 18, 52 (1954).
    93. H. Koelmans, “Suspension in Non-Aqueous Media,’’ Philips Res. Rep., 10, 161 (1955).
    94. F. Grillon, D. Fayeulle, M. Jeandin, “Quantitative image analysis of electrophoretic coatings,” J. Mater. Sci. Lett. 11, 272 (1992).
    95. P. Sharkar, P. S. Nicholson, “Electrophoretic Deposition (EPD): Mechanisms, Kinetics, and Application to Ceramics,”J. Am. Ceram. Soc., 79, 1987 (1996).
    96. H. C. Hamaker, E. J. W. Verwey, “Part II.—(C) Colloid stability. The role of the forces between the particles in electrodeposition and other phenomena,” Trans. Farad. Soc., 35, 180 (1940).
    97. B. L. Sharma, Metal-semiconductor Schottky barrier junctions and their applications, Plenum, New York (1984).
    98. D. A. Neamen, Semiconductor Physics and Devices, Irwin, Boston (1997).
    99. M. Eriksson and L. G. Ekedahl, “Hydrogen adsorption states at the Pd/SiO2 interface and simulation of the response of a Pd metal-oxide-semiconductor hydrogen sensor,” J. Appl. Phys., 83, 3947 (1998).
    100. W. P. Kang and Y. Gürbüz, “Comparison and analysis of Pd- and Pt-GaAs Schottky diodes hydrogen detection,” J. Appl. Phys., 75, 8175 (1994).
    101. R. J. Silbey and R. A. Alberty, Physical Chemistry, 1ed. Wiley, New York (2001).
    102. Z. Q. Shi and W. A. Anderson, “Nearly ideal Schottky contacts of n-InP,” in proceedings of the Third Int Conf Indium Phosphide Relat Mater, Cardiff, Wales, UK, 535 (1991).
    103. Z. Q. Shi, R. L. Wallace and W. A. Anderson, “High-barrier height Schottky diodes on n-InP by deposition on cooled substrates,” Appl. Phys. Lett., 59(4), 446 (1991).
    104. H. Hasegawa, “Fermi level pinning and Schottky barrier height control at metal-semiconductor interface of InP and related materials,” Jpn. J. Appl. Phys., Part 1, 38, 1098 (1999).

    下載圖示 校內:2008-07-28公開
    校外:2008-07-28公開
    QR CODE