簡易檢索 / 詳目顯示

研究生: 張建煌
Chang, Chien-Huang
論文名稱: 含偶氮苯兩性雙團聯共聚物之混摻物之光應答行為和螢光的研究
Studies of Photoresponsive and Fluorescence Behaviors of Azobenzene-Containing Amphiphilic Diblock Copolymers Blends
指導教授: 羅介聰
Lo, Chieh-Tsung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 89
中文關鍵詞: 偶氮苯團聯共聚物混摻光異構化反應螢光
外文關鍵詞: azobenzene, block copolymer, blend, photoisomerization, fluorescence
相關次數: 點閱:88下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究合成具光異構化特性之偶氮苯單體,並以原子轉移自由基聚合法合成兩性雙團聯共聚物poly(acrylic acid)-block-poly(6-[4- (4’-methoxyphenylazo)phenoxy]hexylmethacrylate) (PAA-b-PAzoMA)。
    我們以紫外光-可見光分光光譜儀探討PAA-b-PAzoMA/PEO混摻物在不同溶劑中的光異構化行為。在中性溶劑(THF和DMF)中,PAA-b-PAzoMA進行光異構化的速率大於選擇性溶劑(水)中,因為PAA-b-PAzoMA在水溶液中會形成微胞,PAA將PAzoMA包覆在內側,由於此立體障礙,造成光異構化反應較慢。PAzoMA的莫耳分率越大,光異構化的速率越慢,因為較多的偶氮苯限制了其光異構化的空間。PEO與PAA形成氫鍵後,在中性溶劑中,偶氮苯的光異構化速率不變,在選擇性溶劑中,氫鍵只影響了微胞表面的PAA,對於內部的偶氮苯並沒有施加作用力,因此光異構化速率沒有改變。
    本研究亦探討PAA-b-PAzoMA/PEO混摻物在不同溶劑中的螢光放射行為。PAA-b-PAzoMA在選擇性溶劑中的螢光放射大於中性溶劑中,因為在選擇性溶劑中PAA-b-PAzoMA以微胞形式存在,阻礙了偶氮苯的光異構化反應,提升了螢光放射。在中性溶劑中,PAA-b-PAzoMA加入PEO會增強PAA-b-PAzoMA的螢光放射,因為降低了concentration quenching的可能。在選擇性溶劑中,PAA-b-PAzoMA加入PEO則減弱螢光放射,因為PEO改變了親水/疏水性的平衡。照射紫外光之後,在中性溶劑中的PAA-b-PAzoMA/PEO混摻物螢光放射有所提升,因為順式異構物有助於螢光放射,在選擇性溶劑中的PAA-b-PAzoMA/PEO混摻物螢光放射則減弱,因為PEO改變了親水/疏水性的平衡。

    Azobenzene-containing amphiphilic diblock copolymer poly(acrylic acid)-block-poly(6-[4- (4’-methoxyphenylazo)phenoxy]hexylmethacrylate) (PAA-b-PAzoMA) was synthesized by atom transfer radical polymerization. The photoresponsive behavior of PAA-b-PAzoMA/PEO blends in various solvents was characterized using UV-visible spectrophotometry. The formation of micelles of PAA-b-PAzoMA with azobenzene moieties in the core in aqueous solution cause a reduction of the photoisomerization rate. We added PEO in PAA-b-PAzoMA to form hydrogen bonding with PAA. The hydrogen bonding between PAA and PEO did not affect the organization of azobenzenes, and hence the photoisomerization rate was not changed. We also investigated the fluorescence behavior of PAA-b-PAzoMA/PEO blends in various solvents. The fluorescence of PAA-b-PAzoMA/PEO blends in a selective solvent was stronger than those in a neutral solvent because azobenzene was confined in the core of micelles and it restricted the photoisomerization. In a neutral solvent, the addition of PEO in PAA-b-PAzoMA increased the fluorescence emission because it prohibited the occurrence of concentration quenching. On the other hand, in a selective solvent, the addition of PEO in PAA-b-PAzoMA decreased the fluorescence emission, which was attributed to the hydrogen bonding between PAA and PEO that changed the hydroplilic/hydrophobic balance. After UV irradiation, the fluorescence of PAA-b-PAzoMA/PEO blends in a neutral solvent increased because the cis isomers inhibited the photoinduced electron transfer mechanism. In a selective solvent, the photoisomerization changed the hydroplilic/hydrophobic balance, and the fluorescence of PAA-b-PAzoMA/PEO blends after UV irradiation decreased.

    摘要 I Abstract II 誌謝 X 目錄 XI 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧 3 2.1 共聚物 3 2.2 團聯共聚物與自組裝 4 2.3 偶氮苯 9 2.4 含偶氮苯團聯共聚物 14 2.5 偶氮苯的螢光特性 19 第三章 實驗 28 3.1 藥品 28 3.2 實驗流程及步驟 30 3.2.1 偶氮苯單體合成 30 3.2.2 團聯共聚物 PAA-b-PAzoMA合成 31 3.2.3 PAA-b-PAzoMA之光異構化反應 33 3.2.4 PAA-b-PAzoMA之螢光放射實驗 34 3.3 分析儀器 35 3.3.1 核磁共振儀 (Nuclear magnetic resonance, NMR) 35 3.3.2凝膠滲透層析儀 (Gel permeation chromatography, GPC) 35 3.3.3 傅立葉轉換紅外線光譜儀 (fourier transform infrared spectrometer, FTIR) 36 3.3.4 紫外光-可見光分光光譜儀 (UV-visible spectrophotometer) 36 3.3.5 螢光分光光譜儀 (Fluorescence spetrophotometer) 37 3.3.6 穿透式電子顯微鏡 (Transmission electron microscope, TEM) 37 第四章 結果與討論 39 4.1 團聯共聚物合成 39 4.1.1 偶氮苯單體合成分析 39 4.1.2 PtBA-Br macroinitiator合成分析 42 4.1.3 PtBA-b-PAzoMA合成分析 42 4.1.4 PAA-b-PAzoMA合成分析 44 4.2 PAA-b-PAzoMA之光異構化特性 47 4.2.1 PAA-b-PAzoMA/PEO混摻物於不同溶劑中之光異構化特性 48 4.2.2 PAzoMA莫耳分率改變對光異構化特性的影響 66 4.3 PAA-b-PAzoMA之螢光特性 71 4.3.1 PAA-b-PAzoMA/PEO混摻物於不同溶劑中之螢光特性 71 4.3.2 PAA-b-PAzoMA/PEO混摻物照射紫外光後之螢光特性 74 4.3.3 PAA-b-PAzoMA莫耳分率改變對螢光特性的影響 78 第五章 結論 84 參考文獻 86

    [1] T. Ikeda and O. Tsutsumi, "Optical switching and image storage by means of azobenzene liquid-crystal films," Science, vol. 268, pp. 1873-1875, 1995.
    [2] L. Liu, L. Rui, Y. Gao, and W. Zhang, "A supramolecular approach for fabrication of photo-responsive block-controllable supramolecular polymers," Polymer Chemistry, vol. 5, pp. 5453-5460, 2014.
    [3] N. Feng, G. Han, J. Dong, H. Wu, Y. Zheng, and G. Wang, "Nanoparticle assembly of a photo- and pH-responsive random azobenzene copolymer," Journal of Colloid and Interface Science, vol. 421, pp. 15-21, 2014.
    [4] D. G. Bucknall and H. L. Anderson, "Polymers get organized," Science, vol. 302, pp. 1904-1905, 2003.
    [5] H. Yu and T. Kobayashi, "Photoresponsive block copolymers containing azobenzenes and other chromophores," Molecules, vol. 15, pp. 570-603, 2010.
    [6] F. S. Bates, "Polymer-polymer phase-behavior," Science, vol. 251, pp. 898-905, 1991.
    [7] K. Mita, H. Tanaka, K. Saijo, M. Takenaka, and T. Hashimoto, "Cylindrical domains of block copolymers developed via ordering under moving temperature gradient," Macromolecules, vol. 40, pp. 5923-5933, 2007.
    [8] K. Mita, M. Takenaka, H. Hasegawa, and T. Hashimoto, "Cylindrical domains of block copolymers developed via ordering under moving temperature gradient: real-space analysis," Macromolecules, vol. 41, pp. 8789-8799, 2008.
    [9] T. Hashimoto, J. Bodycomb, Y. Funaki, and K. Kimishima, "The effect of temperature gradient on the microdomain orientation of diblock copolymers undergoing an order-disorder transition," Macromolecules, vol. 32, pp. 952-954, 1999.
    [10] K. Mita, H. Tanaka, K. Saijo, M. Takenaka, and T. Hashimoto, "Macroscopically oriented lamellar microdomains created by “cold zone-heating” method involving OOT," Polymer, vol. 49, pp. 5146-5157, 2008.
    [11] K. Mita, H. Tanaka, K. Saijo, M. Takenaka, and T. Hashimoto, "Ordering of cylindrical domain of block copolymers under moving temperature gradient: Effects of moving rate," Macromolecules, vol. 41, pp. 6780-6786, 2008.
    [12] K. Mita, H. Tanaka, K. Saijo, M. Takenaka, and T. Hashimoto, "Ordering of cylindrical domains of block copolymers under moving temperature gradient: Separation of del T-induced ordering from surface-induced ordering," Macromolecules, vol. 41, pp. 6787-6792, 2008.
    [13] J. Bodycomb, Y. Funaki, K. Kimishima, and T. Hashimoto, "Single-grain lamellar microdomain from a diblock copolymer," Macromolecules, vol. 32, pp. 2075-2077, 1999.
    [14] R. D. M. Travasso, O. Kuksenok, and A. C. Balazs, "Exploiting photoinduced reactions in polymer blends to create hierarchically ordered, defect-free materials," Langmuir, vol. 22, pp. 2620-2628, 2006.
    [15] R. D. M. Travasso, O. Kuksenok, and A. C. Balazs, "Harnessing light to create defect-free, hierarchically structured polymeric materials," Langmuir, vol. 21, pp. 10912-10915, 2005.
    [16] W. Chen, J. Y. Wang, X. Wei, J. Xu, A. C. Balazs, K. Matyjaszewski, et al., "UV-enhanced ordering in azobenzene-containing polystyrene-block-poly(n-butyl methacrylate) copolymer blends," Macromolecules, vol. 44, pp. 278-285, 2011.
    [17] W. Groenewegen, S. U. Egelhaaf, A. Lapp, and J. R. C. van der Maarel, "Neutron scattering estimates of the effect of charge on the micelle structure in aqueous polyelectrolyte diblock copolymer solutions," Macromolecules, vol. 33, pp. 3283-3293, 2000.
    [18] L. F. Zhang and A. Eisenberg, "Morphogenic effect of added ions on crew-cut aggregates of polystyrene-b-poly(acrylic acid) block copolymers in solutions," Macromolecules, vol. 29, pp. 8805-8815, 1996.
    [19] A. Napoli, M. Valentini, N. Tirelli, M. Muller, and J. A. Hubbell, "Oxidation-responsive polymeric vesicles," Nature Materials, vol. 3, pp. 183-189, 2004.
    [20] U. Georgi, P. Reichenbach, U. Oertel, L. M. Eng, and B. Voit, "Synthesis of azobenzene-containing polymers and investigation of their substituent-dependent isomerisation behaviour," Reactive and Functional Polymers, vol. 72, pp. 242-251, 2012.
    [21] Q. Tang, X. Meng, H. Jiang, T. Zhou, C. Gong, X. Fu, et al., "Synthesis and characterization of photo- and pH-responsive nanoparticles containing amino-substituted azobenzene," Journal of Materials Chemistry, vol. 20, pp. 9133-9139, 2010.
    [22] Z.-F. Liu, K. Morigaki, T. Enomoto, K. Hashimoto, and A. Fujishima, "Kinetic studies on the thermal cis-trans isomerization of an azo compound in the assembled monolayer film," Journal of Physical Chemistry, vol. 96, pp. 1875-1880, 1992.
    [23] X. Tong, L. Cui, and Y. Zhao, "Confinement effects on photoalignment, photochemical phase transition, and thermochromic behavior of liquid crystalline azobenzene-containing diblock copolymers," Macromolecules, vol. 37, pp. 3101-3112, 2004.
    [24] R. Haag, "Supramolecular drug-delivery systems based on polymeric core-shell architectures," Angewandte Chemie International Edition, vol. 43, pp. 278-82, 2004.
    [25] G. Wang, X. Tong, and Y. Zhao, "Preparation of azobenzene-containing amphiphilic diblock copolymers for light-responsive micellar aggregates," Macromolecules, vol. 37, pp. 8911-8917, 2004.
    [26] J.-H. Liu and Y.-H. Chiu, "Behaviors of self-assembled diblock copolymer with pendant photosensitive azobenzene segments," Journal of Polymer Science Part A: Polymer Chemistry, vol. 48, pp. 1142-1148, 2010.
    [27] M. Shimizu and T. Hiyama, "Organic fluorophores exhibiting highly efficient photoluminescence in the solid state," Chemistry – An Asian Journal, vol. 5, pp. 1516-31, 2010.
    [28] P. S. Zacharias, S. Ameerunisha, and S. R. Korupoju, "Photoinduced fluorescence changes on E–Z isomerisation in azobenzene derivatives," Journal of the Chemical Society, Perkin Transactions 2, pp. 2055-2059, 1998.
    [29] Y. Xiang, X. Xue, J. Zhu, Z. Zhang, W. Zhang, N. Zhou, et al., "Fluorescence behavior of an azobenzene-containing amphiphilic diblock copolymer," Polymer Chemistry, vol. 1, p. 1453, 2010.
    [30] Q. Bo and Y. Zhao, "Fluorescence from an Azobenzene-Containing Diblock Copolymer Micelle in Solution," Langmuir, vol. 23, pp. 5746-5751, 2007.
    [31] M. R. Han, Y. Hirayama, and M. Hara, "Fluorescence enhancement from self-assembled aggregates substituent effects on self-assembly of azobenzenes," Chemistry of Materials, vol. 18, pp. 2784-2786, 2006.
    [32] X. Ran, H. Wang, L. Shi, J. Lou, B. Liu, M. Li, et al., "Light-driven fluorescence enhancement and self-assembled structural evolution of an azobenzene derivative," Journal of Materials Chemistry C, vol. 2, pp. 9866-9873, 2014.
    [33] M. Z. Alam, A. Shibahara, T. Ogata, and S. Kurihara, "Synthesis of azobenzene-functionalized star polymers via RAFT and their photoresponsive properties," Polymer, vol. 52, pp. 3696-3703, 2011.
    [34] K. A. Davis and K. Matyjaszewski, "Atom transfer radical polymerization of tert-butyl acrylate and preparation of block copolymers," Macromolecules, vol. 33, pp. 4039-4047, 2000.
    [35] E. Stefanis and C. Panayiotou, "Prediction of Hansen solubility parameters with a new group-contribution method," International Journal of Thermophysics, vol. 29, pp. 568-585, 2008.
    [36] M. H. Charles, "Table A.1," in Hansen Solubility Parameters, ed: CRC Press, 2007, pp. 385-483.
    [37] J.-C. Lim, J.-K. Park, and H.-Y. Song, "FTIR Investigation of Ion-Dipole Interaction in Styrene lonomer/ Poly (ethylene Oxide) Blends," Journal of Polymer Science: Part B Polymer Physics, vol. 32, pp. 29-35, 1994.
    [38] Pradip, C. Maltesh, P. Somasundaran, R. A. Kulkarni, and S. Gundiah, "Polymer-polymer complexation in dilute aqueous solutions poly(acrylic acid)-poly( ethylene oxide) and poly( acrylic acid)-poly (vinylpyrrolidone)," Langmuir, vol. 7, pp. 2108-2111, 1991.
    [39] Y. Tian, T. A. Hatton, and K. C. Tam, "Dissociation and thermal characteristics of poly(acrylic acid) modified pluronic block copolymers in aqueous solution," Polymer, vol. 55, pp. 3886-3893, 2014.
    [40] H. Ren, D. Chen, Y. Shi, H. Yu, and Z. Fu, "A carboxylic azo monomer and its homopolymer: synthesis, self-organization and fluorescence behaviour in solution," Polymer Chemistry, vol. 6, pp. 270-277, 2015.
    [41] M. Nakazawa, Y. K. Han, H. Fu, S. Matsuoka, T. K. Kwei, and Y. Okamoto, "Effects of the hydrogen bonding on the fluorescence of ketone-substituted poly(phenylene)s in solutions and solid state.," Macromolecules, vol. 34, pp. 5975-5978, 2001.
    [42] V. V. Khutoryanskiy, A. V. Dubolazov, Z. S. Nurkeeva, and G. A. Mun, "pH effects in the complex formation and blending of poly(acrylic acid) with poly(ethylene oxide)," Langmuir, vol. 20, pp. 3785-3790, 2004.
    [43] L. Shi, X. Ran, Y. Li, Q. Li, W. Qiu, and L. Guo, "Photoresponsive structure transformation and emission enhancement based on a tapered azobenzene gelator," RSC Advances, vol. 5, pp. 38283-38289, 2015.

    下載圖示 校內:2021-08-24公開
    校外:2021-08-24公開
    QR CODE