簡易檢索 / 詳目顯示

研究生: 潘俞璇
Pan, Yu-Hsuan
論文名稱: Rapamycin、tubastatin A及野生型亨廷頓蛋白對亨廷頓相關蛋白40誘導突變型亨廷頓蛋白聚集體形成的調控
Modulation of HAP40-induced mutant huntingtin aggregates formation by rapamycin, tubastatin A and wild type huntingtin
指導教授: 何盧勳
Her, Lu-Shiun
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 74
中文關鍵詞: 亨廷頓蛋白亨廷頓蛋白40泛素-蛋白酶體降解系統聚集體
外文關鍵詞: Huntingtin, Huntingtin associated protein 40, Ubiquitin-proteasome system, Aggregate
相關次數: 點閱:116下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 亨廷頓舞蹈症是一種顯性遺傳的神經退化性疾病,致病原因為亨廷頓蛋白發生突變,造成CAG三核苷酸重複序列異常擴增,促使錯誤摺疊的亨廷頓蛋白形成聚集體並堆積於神經細胞中。亨廷頓蛋白的功能尚未完全釐清,但其會與許多蛋白交互作用來參與細胞機制的調控,其中亨廷頓相關蛋白40會和亨廷頓蛋白的羧基端結合,調控早期內噬體在微管上的運輸。實驗室先前發現亨廷頓相關蛋白40過度表現時會增加K48泛素化蛋白的堆積及促進細胞自噬流量,已知K48所形成的多泛素鏈蛋白會被送往蛋白酶體進行降解,且細胞可藉由促進細胞自噬來彌補泛素-蛋白酶體降解系統功能的缺失,因此我們想探討過度表現亨廷頓相關蛋白40對泛素-蛋白酶體降解系統功能的影響,結果發現當HAP40過度表現時會導致泛素-蛋白酶體降解系統失常。另外,亨廷頓相關蛋白40過度表現會促進誘導細胞自噬流量並且也會促進突變型亨廷頓蛋白聚集體形成,在前人研究發現處理rapamycin抑制mTOR以促進細胞自噬時可減少突變型亨廷頓蛋白聚集體數目,因此我們在亨廷頓相關蛋白40過度表現的情況下再加入rapamycin,發現聚集體數目明顯減少。文獻指出當HDAC6受抑制時,會提高微管運動蛋白和微管之間的親和性,並加速物質在微管上的運輸,並且HDAC6參與在清除泛素化蛋白的過程中,因此我們也探討在亨廷頓相關蛋白40過度表現的情形下再加入tubastatin A對聚集體數目的影響,結果發現聚集體數目明顯減少。由於目前為止對亨廷頓相關蛋白40的功能了解的不多,所以我們想藉由探討亨廷頓相關蛋白40會與哪些蛋白質交互作用以釐清其在亨廷頓舞蹈症中扮演的角色,結果得知亨廷頓相關蛋白40可能利用完整的胺基酸片段和亨廷頓蛋白結合,但尚未發現其未與其他蛋白質交互作用。此外我們發現HAP40的NH2及COOH兩端皆會促進聚集體的形成。綜合以上結果顯示過度表現HAP40會造成泛素-蛋白酶體降解系統功能失常,其次rapamycin及tubastatin A可減少因過度表現HAP40而增加的突變型亨廷頓蛋白聚集體數目,此外HAP40需要以完整的胺基酸片段與亨廷頓蛋白交互作用,而HAP40兩端皆會促進聚集體形成,然而目前為止我們尚未發現能與HAP40交互作用的未知蛋白。

    Accumulation of mutant huntingtin aggregates in the brain tissues of HD patients and transgenic mouse is a hallmark of Huntington’s disease. Although it is unclear that the mutant huntingtin aggregates is toxic or beneficial for neuronal cells, the accumulation of aggregates in cortical and striatal neurons leads to neuropathological features. Ubiquitin-proteasome system (UPS) is responsible for clearing misfolded proteins. We next aimed to assess the role of HAP40 overexpression on UPS. Results revealed that HAP40 overexpression caused accumulation of UbG76V-GFP, indicating an impairment of UPS. Our previous studies showed that HAP40 overexpression induced autophagic flux by an mTOR-independent manner and promoted mutant huntingtin aggregates formation. Inhibition of mTOR by rapamycin activates autophagy. Therefore, we wondered effect of rapamycin treatment on amount of mutant huntingtin aggregates induced by HAP40 overexpression. Results showed that amount of aggregates decreased upon rapamycin treatment. The aggresome pathway coordinated by HDAC6 is activated when proteasomal functions are impaired. Inhibition of HDAC6 deacetylase activity increases tubulin acetylation and promotes the recruitment of motor proteins to microtubules. Hence, we wondered how treatment of tubastatin A modulated HAP40-induced mutant huntingtin aggregates formation. Results demonstrated that tubastatin A was able to reduce amount of aggregates. Since the function of HAP40 is largely unclear, we then identified proteins that interact with HAP40. We found that HAP40 interacts with huntingtin but the interaction of HAP40 with other proteins has not yet been found.

    中文摘要 I Abstract III 誌謝 VII 目錄 VIII 圖目錄 X 縮寫表 XI 前言 1 一、亨廷頓舞蹈症 (Huntington’s disease) 1 二、亨廷頓蛋白 (Huntingtin, Htt) 1 三、亨廷頓相關蛋白40 (Huntingtin associated protein 40, HAP40) 3 四、亨廷頓蛋白聚集體(Huntingtin aggregates) 3 五、泛素-蛋白酶體降解系統(Ubiquitin-proteasome system, UPS) 4 六、微管動態(Microtubule dynamics) 6 實驗目的 7 材料與方法 8 一、藥品、抗體和質體 8 二、細胞培養(Cell culture) 9 三、轉染作用(Transfection) 12 四、細胞免疫螢光染色(Immunofluorescence staining) 14 五、即時影像觀察(Live imaging) 15 六、西方墨點法(Western blot assay) 15 七、免疫沉澱法(Immunoprecipitation, IP) 17 八、銀染(Silver staining) 18 九、統計方法(Statistics) 19 結果 20 一、N2a細胞中過度表現HAP40對泛素-蛋白酶體降解系統(UPS)的影響 20 二、N2a細胞中過度表現HAP40再抑制mTOR對亨廷頓蛋白聚集體形成的影響 21 三、N2a細胞中過度表現HAP40再抑制HDAC6對亨廷頓蛋白聚集體形成的影響 22 四、N2a細胞中過度表現HttQ23F對HAP40誘導亨廷頓蛋白聚集體形成的影響 23 五、N2a細胞中抑制mTOR及HDAC6對泛素-蛋白酶體降解系統(UPS)的影響 24 六、N2a細胞中過度表現HAP40 N端和C端對亨廷頓蛋白聚集體形成的影響 24 七、利用免疫沉澱法探討HAP40是利用其N或C端和亨廷頓蛋白進行交互作用 25 八、測試何種HAP40抗體適用於免疫共沉澱實驗 26 九、免疫共沉澱實驗探討HAP40與野生型亨廷頓蛋白及突變型亨廷頓蛋白之間的親和性 27 十、以RIPA buffer、GTPase binding buffer和NP40 lysis buffer進行免疫沉澱實驗偵測HAP40會與哪些蛋白質進行交互作用 27 討論 30 參考文獻 36 圖與圖誌 46

    Adams, J. 2003. The proteasome: structure, function, and role in the cell. Cancer treatment reviews. 29 Suppl 1:3-9.
    Andrew, S.E., Y.P. Goldberg, B. Kremer, H. Telenius, J. Theilmann, S. Adam, E. Starr, F. Squitieri, B. Lin, M.A. Kalchman, and et al. 1993. The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease. Nature genetics. 4:398-403.
    Aronin, N., K. Chase, C. Young, E. Sapp, C. Schwarz, N. Matta, R. Kornreich, B. Landwehrmeyer, E. Bird, M.F. Beal, and et al. 1995. CAG expansion affects the expression of mutant Huntingtin in the Huntington's disease brain. Neuron. 15:1193-1201.
    Arrasate, M., S. Mitra, E.S. Schweitzer, M.R. Segal, and S. Finkbeiner. 2004. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature. 431:805-810.
    Baumeister, W., J. Walz, F. Zuhl, and E. Seemuller. 1998. The proteasome: paradigm of a self-compartmentalizing protease. Cell. 92:367-380.
    Bence, N.F., R.M. Sampat, and R.R. Kopito. 2001. Impairment of the ubiquitin-proteasome system by protein aggregation. Science (New York, N.Y.). 292:1552-1555.
    Bennett, E.J., N.F. Bence, R. Jayakumar, and R.R. Kopito. 2005. Global impairment of the ubiquitin-proteasome system by nuclear or cytoplasmic protein aggregates precedes inclusion body formation. Molecular cell. 17:351-365.
    Bett, J.S., G.M. Goellner, B. Woodman, G. Pratt, M. Rechsteiner, and G.P. Bates. 2006. Proteasome impairment does not contribute to pathogenesis in R6/2 Huntington's disease mice: exclusion of proteasome activator REGgamma as a therapeutic target. Human molecular genetics. 15:33-44.
    Binder, D.K., and H.E. Scharfman. 2004. Brain-derived neurotrophic factor. Growth factors (Chur, Switzerland). 22:123-131.
    Bowman, A.B., S.Y. Yoo, N.P. Dantuma, and H.Y. Zoghbi. 2005. Neuronal dysfunction in a polyglutamine disease model occurs in the absence of ubiquitin-proteasome system impairment and inversely correlates with the degree of nuclear inclusion formation. Human molecular genetics. 14:679-691.
    Boyault, C., B. Gilquin, Y. Zhang, V. Rybin, E. Garman, W. Meyer-Klaucke, P. Matthias, C.W. Muller, and S. Khochbin. 2006. HDAC6-p97/VCP controlled polyubiquitin chain turnover. The EMBO journal. 25:3357-3366.
    Brandt, J., M.E. Strauss, J. Larus, B. Jensen, S.E. Folstein, and M.F. Folstein. 1984. Clinical correlates of dementia and disability in Huntington's disease. Journal of clinical neuropsychology. 6:401-412.
    Cattaneo, E., D. Rigamonti, D. Goffredo, C. Zuccato, F. Squitieri, and S. Sipione. 2001. Loss of normal huntingtin function: new developments in Huntington's disease research. Trends in neurosciences. 24:182-188.
    Cattaneo, E., C. Zuccato, and M. Tartari. 2005. Normal huntingtin function: an alternative approach to Huntington's disease. Nature reviews. Neuroscience. 6:919-930.
    Caviston, J.P., and E.L. Holzbaur. 2009. Huntingtin as an essential integrator of intracellular vesicular trafficking. Trends in cell biology. 19:147-155.
    Cha, J.H. 2000. Transcriptional dysregulation in Huntington's disease. Trends in neurosciences. 23:387-392.
    Colin, E., D. Zala, G. Liot, H. Rangone, M. Borrell-Pages, X.J. Li, F. Saudou, and S. Humbert. 2008. Huntingtin phosphorylation acts as a molecular switch for anterograde/retrograde transport in neurons. The EMBO journal. 27:2124-2134.
    Conde, C., and A. Caceres. 2009. Microtubule assembly, organization and dynamics in axons and dendrites. Nature reviews. Neuroscience. 10:319-332.
    Cooper, J.K., G. Schilling, M.F. Peters, W.J. Herring, A.H. Sharp, Z. Kaminsky, J. Masone, F.A. Khan, M. Delanoy, D.R. Borchelt, V.L. Dawson, T.M. Dawson, and C.A. Ross. 1998. Truncated N-terminal fragments of huntingtin with expanded glutamine repeats form nuclear and cytoplasmic aggregates in cell culture. Human molecular genetics. 7:783-790.
    Cornett, J., F. Cao, C.E. Wang, C.A. Ross, G.P. Bates, S.H. Li, and X.J. Li. 2005. Polyglutamine expansion of huntingtin impairs its nuclear export. Nature genetics. 37:198-204.
    Coux, O., K. Tanaka, and A.L. Goldberg. 1996. Structure and functions of the 20S and 26S proteasomes. Annual review of biochemistry. 65:801-847.
    Cummings, C.J., M.A. Mancini, B. Antalffy, D.B. DeFranco, H.T. Orr, and H.Y. Zoghbi. 1998. Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nature genetics. 19:148-154.
    Davies, S.W., M. Turmaine, B.A. Cozens, M. DiFiglia, A.H. Sharp, C.A. Ross, E. Scherzinger, E.E. Wanker, L. Mangiarini, and G.P. Bates. 1997. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell. 90:537-548.
    de la Monte, S.M., J.P. Vonsattel, and E.P. Richardson, Jr. 1988. Morphometric demonstration of atrophic changes in the cerebral cortex, white matter, and neostriatum in Huntington's disease. Journal of neuropathology and experimental neurology. 47:516-525.
    de Ruijter, A.J., A.H. van Gennip, H.N. Caron, S. Kemp, and A.B. van Kuilenburg. 2003. Histone deacetylases (HDACs): characterization of the classical HDAC family. The Biochemical journal. 370:737-749.
    Dennissen, F.J., N. Kholod, and F.W. van Leeuwen. 2012. The ubiquitin proteasome system in neurodegenerative diseases: culprit, accomplice or victim? Progress in neurobiology. 96:190-207.
    Diaz-Hernandez, M., F. Hernandez, E. Martin-Aparicio, P. Gomez-Ramos, M.A. Moran, J.G. Castano, I. Ferrer, J. Avila, and J.J. Lucas. 2003. Neuronal induction of the immunoproteasome in Huntington's disease. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23:11653-11661.
    DiFiglia, M., E. Sapp, K. Chase, C. Schwarz, A. Meloni, C. Young, E. Martin, J.P. Vonsattel, R. Carraway, S.A. Reeves, and et al. 1995. Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron. 14:1075-1081.
    DiFiglia, M., E. Sapp, K.O. Chase, S.W. Davies, G.P. Bates, J.P. Vonsattel, and N. Aronin. 1997. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science (New York, N.Y.). 277:1990-1993.
    Dompierre, J.P., J.D. Godin, B.C. Charrin, F.P. Cordelieres, S.J. King, S. Humbert, and F. Saudou. 2007. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington's disease by increasing tubulin acetylation. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27:3571-3583.
    Duyao, M., C. Ambrose, R. Myers, A. Novelletto, F. Persichetti, M. Frontali, S. Folstein, C. Ross, M. Franz, M. Abbott, and et al. 1993. Trinucleotide repeat length instability and age of onset in Huntington's disease. Nature genetics. 4:387-392.
    Engelender, S., A.H. Sharp, V. Colomer, M.K. Tokito, A. Lanahan, P. Worley, E.L. Holzbaur, and C.A. Ross. 1997. Huntingtin-associated protein 1 (HAP1) interacts with the p150Glued subunit of dynactin. Human molecular genetics. 6:2205-2212.
    Gauthier, L.R., B.C. Charrin, M. Borrell-Pages, J.P. Dompierre, H. Rangone, F.P. Cordelieres, J. De Mey, M.E. MacDonald, V. Lessmann, S. Humbert, and F. Saudou. 2004. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell. 118:127-138.
    Hegde, A.N. 2010. The ubiquitin-proteasome pathway and synaptic plasticity. Learning & memory (Cold Spring Harbor, N.Y.). 17:314-327.
    Ho, L.W., R. Brown, M. Maxwell, A. Wyttenbach, and D.C. Rubinsztein. 2001. Wild type Huntingtin reduces the cellular toxicity of mutant Huntingtin in mammalian cell models of Huntington's disease. Journal of medical genetics. 38:450-452.
    Hubbert, C., A. Guardiola, R. Shao, Y. Kawaguchi, A. Ito, A. Nixon, M. Yoshida, X.F. Wang, and T.P. Yao. 2002. HDAC6 is a microtubule-associated deacetylase. Nature. 417:455-458.
    Iwata, A., B.E. Riley, J.A. Johnston, and R.R. Kopito. 2005. HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. The Journal of biological chemistry. 280:40282-40292.
    Janke, C., and J.C. Bulinski. 2011. Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nature reviews. Molecular cell biology. 12:773-786.
    Kawaguchi, Y., J.J. Kovacs, A. McLaurin, J.M. Vance, A. Ito, and T.P. Yao. 2003. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell. 115:727-738.
    King, M.A., S. Hands, F. Hafiz, N. Mizushima, A.M. Tolkovsky, and A. Wyttenbach. 2008. Rapamycin inhibits polyglutamine aggregation independently of autophagy by reducing protein synthesis. Molecular pharmacology. 73:1052-1063.
    Klement, I.A., P.J. Skinner, M.D. Kaytor, H. Yi, S.M. Hersch, H.B. Clark, H.Y. Zoghbi, and H.T. Orr. 1998. Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice. Cell. 95:41-53.
    Korolchuk, V.I., F.M. Menzies, and D.C. Rubinsztein. 2010. Mechanisms of cross-talk between the ubiquitin-proteasome and autophagy-lysosome systems. FEBS letters. 584:1393-1398.
    Leavitt, B.R., J.M. van Raamsdonk, J. Shehadeh, H. Fernandes, Z. Murphy, R.K. Graham, C.L. Wellington, L.A. Raymond, and M.R. Hayden. 2006. Wild-type huntingtin protects neurons from excitotoxicity. Journal of neurochemistry. 96:1121-1129.
    Li, S.H., and X.J. Li. 1998. Aggregation of N-terminal huntingtin is dependent on the length of its glutamine repeats. Human molecular genetics. 7:777-782.
    Li, X., C.E. Wang, S. Huang, X. Xu, X.J. Li, H. Li, and S. Li. 2010. Inhibiting the ubiquitin-proteasome system leads to preferential accumulation of toxic N-terminal mutant huntingtin fragments. Human molecular genetics. 19:2445-2455.
    Li, X.J., and S. Li. 2011. Proteasomal dysfunction in aging and Huntington disease. Neurobiology of disease. 43:4-8.
    Lin, B., J. Nasir, H. MacDonald, G. Hutchinson, R.K. Graham, J.M. Rommens, and M.R. Hayden. 1994. Sequence of the murine Huntington disease gene: evidence for conservation, alternate splicing and polymorphism in a triplet (CCG) repeat [corrected]. Human molecular genetics. 3:85-92.
    MacDonald, M.E., C.M. Ambrose, M.P. Duyao, R.H. Myers, C. Lin, L. Srinidhi, G. Barnes, S.A. Taylor, M. James, N. Groot, H. MacFarlane, B. Jenkins, M.A. Anderson, N.S. Wexler, J.F. Gusella, G.P. Bates, S. Baxendale, H. Hummerich, S. Kirby, M. North, S. Youngman, R. Mott, G. Zehetner, Z. Sedlacek, A. Poustka, A.-M. Frischauf, H. Lehrach, A.J. Buckler, D. Church, L. Doucette-Stamm, M.C. O'Donovan, L. Riba-Ramirez, M. Shah, V.P. Stanton, S.A. Strobel, K.M. Draths, J.L. Wales, P. Dervan, D.E. Housman, M. Altherr, R. Shiang, L. Thompson, T. Fielder, J.J. Wasmuth, D. Tagle, J. Valdes, L. Elmer, M. Allard, L. Castilla, M. Swaroop, K. Blanchard, F.S. Collins, R. Snell, T. Holloway, K. Gillespie, N. Datson, D. Shaw, and P.S. Harper. 1993. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell. 72:971-983.
    Mackeh, R., D. Perdiz, S. Lorin, P. Codogno, and C. Pous. 2013. Autophagy and microtubules - new story, old players. Journal of cell science. 126:1071-1080.
    Martinez-Vicente, M., Z. Talloczy, E. Wong, G. Tang, H. Koga, S. Kaushik, R. de Vries, E. Arias, S. Harris, D. Sulzer, and A.M. Cuervo. 2010. Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease. Nature neuroscience. 13:567-576.
    Maynard, C.J., C. Bottcher, Z. Ortega, R. Smith, B.I. Florea, M. Diaz-Hernandez, P. Brundin, H.S. Overkleeft, J.Y. Li, J.J. Lucas, and N.P. Dantuma. 2009. Accumulation of ubiquitin conjugates in a polyglutamine disease model occurs without global ubiquitin/proteasome system impairment. Proceedings of the National Academy of Sciences of the United States of America. 106:13986-13991.
    Millecamps, S., and J.P. Julien. 2013. Axonal transport deficits and neurodegenerative diseases. Nature reviews. Neuroscience. 14:161-176.
    Mitchison, T., and M. Kirschner. 1984. Dynamic instability of microtubule growth. Nature. 312:237-242.
    Nielsen, E., F. Severin, J.M. Backer, A.A. Hyman, and M. Zerial. 1999. Rab5 regulates motility of early endosomes on microtubules. Nature cell biology. 1:376-382.
    Pal, A., F. Severin, B. Lommer, A. Shevchenko, and M. Zerial. 2006. Huntingtin-HAP40 complex is a novel Rab5 effector that regulates early endosome motility and is up-regulated in Huntington's disease. The Journal of cell biology. 172:605-618.
    Peters, M.F., and C.A. Ross. 2001. Isolation of a 40-kDa Huntingtin-associated protein. The Journal of biological chemistry. 276:3188-3194.
    Pickart, C.M. 2001. Mechanisms underlying ubiquitination. Annual review of biochemistry. 70:503-533.
    Pickart, C.M., and D. Fushman. 2004. Polyubiquitin chains: polymeric protein signals. Current opinion in chemical biology. 8:610-616.
    Qin, Z.H., and Z.L. Gu. 2004. Huntingtin processing in pathogenesis of Huntington disease. Acta pharmacologica Sinica. 25:1243-1249.
    Ravikumar, B., R. Duden, and D.C. Rubinsztein. 2002. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Human molecular genetics. 11:1107-1117.
    Ravikumar, B., C. Vacher, Z. Berger, J.E. Davies, S. Luo, L.G. Oroz, F. Scaravilli, D.F. Easton, R. Duden, C.J. O'Kane, and D.C. Rubinsztein. 2004. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nature genetics. 36:585-595.
    Renna, M., C. Schaffner, K. Brown, S. Shang, M.H. Tamayo, K. Hegyi, N.J. Grimsey, D. Cusens, S. Coulter, J. Cooper, A.R. Bowden, S.M. Newton, B. Kampmann, J. Helm, A. Jones, C.S. Haworth, R.J. Basaraba, M.A. DeGroote, D.J. Ordway, D.C. Rubinsztein, and R.A. Floto. 2011. Azithromycin blocks autophagy and may predispose cystic fibrosis patients to mycobacterial infection. The Journal of clinical investigation. 121:3554-3563.
    Ross, C.A., and C.M. Pickart. 2004. The ubiquitin-proteasome pathway in Parkinson's disease and other neurodegenerative diseases. Trends in cell biology. 14:703-711.
    Ross, C.A., and S.J. Tabrizi. 2011. Huntington's disease: from molecular pathogenesis to clinical treatment. The Lancet Neurology. 10:83-98.
    Rubinsztein, D.C. 2006. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature. 443:780-786.
    Rubinsztein, D.C., and R.A. Nixon. 2010. Rapamycin induces autophagic flux in neurons. Proceedings of the National Academy of Sciences of the United States of America. 107:E181; author reply E182.
    Saudou, F., S. Finkbeiner, D. Devys, and M.E. Greenberg. 1998. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell. 95:55-66.
    Scherzinger, E., A. Sittler, K. Schweiger, V. Heiser, R. Lurz, R. Hasenbank, G.P. Bates, H. Lehrach, and E.E. Wanker. 1999. Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: implications for Huntington's disease pathology. Proceedings of the National Academy of Sciences of the United States of America. 96:4604-4609.
    Snell, R.G., J.C. MacMillan, J.P. Cheadle, I. Fenton, L.P. Lazarou, P. Davies, M.E. MacDonald, J.F. Gusella, P.S. Harper, and D.J. Shaw. 1993. Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington's disease. Nature genetics. 4:393-397.
    Spargo, E., I.P. Everall, and P.L. Lantos. 1993. Neuronal loss in the hippocampus in Huntington's disease: a comparison with HIV infection. Journal of neurology, neurosurgery, and psychiatry. 56:487-491.
    Takano, H., and J.F. Gusella. 2002. The predominantly HEAT-like motif structure of huntingtin and its association and coincident nuclear entry with dorsal, an NF-kB/Rel/dorsal family transcription factor. BMC neuroscience. 3:15.
    True, O., and P. Matthias. 2012. Interplay between histone deacetylases and autophagy--from cancer therapy to neurodegeneration. Immunology and cell biology. 90:78-84.
    Van Raamsdonk, J.M., J. Pearson, Z. Murphy, M.R. Hayden, and B.R. Leavitt. 2006. Wild-type huntingtin ameliorates striatal neuronal atrophy but does not prevent other abnormalities in the YAC128 mouse model of Huntington disease. BMC neuroscience. 7:80.
    Varma, S., and R.L. Khandelwal. 2007. Effects of rapamycin on cell proliferation and phosphorylation of mTOR and p70(S6K) in HepG2 and HepG2 cells overexpressing constitutively active Akt/PKB. Biochimica et biophysica acta. 1770:71-78.
    Velier, J., M. Kim, C. Schwarz, T.W. Kim, E. Sapp, K. Chase, N. Aronin, and M. DiFiglia. 1998. Wild-type and mutant huntingtins function in vesicle trafficking in the secretory and endocytic pathways. Experimental neurology. 152:34-40.
    Verhoef, L.G., K. Lindsten, M.G. Masucci, and N.P. Dantuma. 2002. Aggregate formation inhibits proteasomal degradation of polyglutamine proteins. Human molecular genetics. 11:2689-2700.
    Voges, D., P. Zwickl, and W. Baumeister. 1999. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annual review of biochemistry. 68:1015-1068.
    Waelter, S., A. Boeddrich, R. Lurz, E. Scherzinger, G. Lueder, H. Lehrach, and E.E. Wanker. 2001. Accumulation of mutant huntingtin fragments in aggresome-like inclusion bodies as a result of insufficient protein degradation. Molecular biology of the cell. 12:1393-1407.
    Wang, J., C.E. Wang, A. Orr, S. Tydlacka, S.H. Li, and X.J. Li. 2008. Impaired ubiquitin-proteasome system activity in the synapses of Huntington's disease mice. The Journal of cell biology. 180:1177-1189.
    Xia, J., D.H. Lee, J. Taylor, M. Vandelft, and R. Truant. 2003. Huntingtin contains a highly conserved nuclear export signal. Human molecular genetics. 12:1393-1403.
    Yamamoto, A., J.J. Lucas, and R. Hen. 2000. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease. Cell. 101:57-66.
    Zilberman, Y., C. Ballestrem, L. Carramusa, R. Mazitschek, S. Khochbin, and A. Bershadsky. 2009. Regulation of microtubule dynamics by inhibition of the tubulin deacetylase HDAC6. Journal of cell science. 122:3531-3541.
    Zuccato, C., and E. Cattaneo. 2007. Role of brain-derived neurotrophic factor in Huntington's disease. Progress in neurobiology. 81:294-330.

    下載圖示 校內:2019-08-26公開
    校外:2019-08-26公開
    QR CODE