簡易檢索 / 詳目顯示

研究生: 江永祥
Chiang, Yung-Hsiang
論文名稱: 以狀態空間方法解析二維楔形體彈性力學問題
A state space approach for problems of elastic wedges
指導教授: 譚建國
Tarn, Jiann-Quo
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 88
中文關鍵詞: 特徵值重根奇異性楔形問題轉換矩陣狀態空間法
外文關鍵詞: Wedge problem, Transfer matrix, State space formalism, Singularity, Repeated roots of eigenvalue
相關次數: 點閱:114下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 古典線彈性力學中,楔形體內部應力之表達式在臨界角度下會變得不合理,此奇異性引人困惑,以往有許多人加以研討,試圖消除此奇異性。本文以狀態空間法解析楔形體問題,不引入應力函數解析。狀態空間法以實際物理量當作狀態向量,配合轉換矩陣處理楔形體問題,文獻中奇異性之產生乃因為傳統方法未能考慮特徵值為重根所造成數學解析不正確之結果。本文中發現臨界角度所對應之特徵值為重根,且發現此奇異現象不只發生在臨界角度,與特徵值有密切關係,本文並以數值方法對特徵值方程式之根進行計算,驗證在楔形體角度與外力特殊組合下,特徵值確為重根,若未考慮重根,應力表達式不完整,會導致奇異性問題,若對特徵值重根情況考慮週詳,則沒有應力奇異性的問題。

    In the classical linear elasticity, the expression for the stress distribution in a wedge becomes unreasonable at those critical angles. This confused singularity had been often investigated, and many efforts for the elimination of the singularity had been made. In this article the wedge problem is studied using the state space formalism which is greatly different to the formulation using analytic stress function. In this formalism, the state vectors are taken from those physical quantities. In corporation to the process of transfer matrix, the wedge problem is then solved. The existences of the singularity in those literatures are all due to the incomplete results of the classical analysis in which the effect of the repeated eigenvlaues had been neglected. We found that the eigenvlaues for the critical angles are all repeated. And the singularity exists not only at those critical angles, but it is also related to the eigenvlaues. We have used several numerical methods for calculating the roots of the characteristic equation and verified that the eigenvlaues are really repeated under the special cases of wedge at some specified angles and subjected to some specified forms of external force. If the effect of the repeated roots is neglected, the singularity exists due to the incomplete expressions for the stress fields. Under the complete consideration for the repeated eigenvlaues, there is no such singularity.

    摘要 Ⅰ 誌謝 Ⅲ 目錄 Ⅳ 表目錄 Ⅵ 圖目錄 Ⅶ 符號表 Ⅷ 第一章 緒論 1 第二章 圓柱座標之狀態空間方程式 5 2-1 基本方程式 5 2-2 狀態空間下的基本特性 9 第三章 二維楔形體問題 11 3-1 狀態空間方程式 11 3-2 特徵值、特徵向量與轉換矩陣(Transfer matrix) 13 3-3 對稱與反對稱特徵值 21 3-4 零特徵值 28 3-5 對稱二維楔形體 36 3-5.1 外力與特徵值無關 36 3-5.2 特徵值與外力相關 39 3-6 反對稱二維楔形體 45 3-6.1 特徵值與外力無關 45 3-6.2 特徵值單根與外力相關 47 3-6.3 特徵值重根與外力相關 51 第四章 數值驗證與歸納 57 4-1 特徵值 與幾何角度 之關係 57 4-2 數學驗證 59 4-3 數值解析方法 61 4-4 結果與討論 65 第五章 結論 71 參考文獻 72 附錄A一階轉置矩陣 74 附錄B 矩陣 78 附錄C 反對稱楔形體特徵值示意圖 82 附錄D 對稱楔形體特徵值示意圖 85 自述 88

    Dempsey,J.P.,The wedge subjected to tractions : a paradox resolved, Journal of Elasticity Vol.11, No.1, 1-10(1981)

    Ding,H.J.,Peng,N.L.,and Li,Y.,The wedge subjected to tractions proporational to :A paradox resolved,International Journal of Solids and Structures Vol.35, No.20, 2695-2714(1997)

    Flugge, Wilhelm, Handbook of engineering mechanics, McGraw-Hill, New York(1962)

    Joseph, P. F.,and Zhang Ningsheng,Multiple root solutions,wedge paradoxes and singular stress states that are not variable-separable, Compositirs Science and Technilogy Vol.58, 1839-1859(1998)

    Lekhnitskii, S. G.,Theory of elasticity of an anisotropic body, Mir Publishers, Moscow(1981)

    Timoshenko, S. P.,and Goodier, J. N.,Theory of elasticity, McGraw-Hill, New York(1970)

    Tarn, J. Q.,A state space formalism for anisotropic elasticity Part Ⅰ:Rectilinear anisotropy, International Journal of Solids and Structures Vol.39, 5143-5155(2002)
    Tarn, J. Q.,A state space formalism for anisotropic elasticity Part Ⅱ:Cylindrical anisotropy, International Journal of Solids and Structures Vol.39, 5157-5172(2002)

    Ting,T.C.T.,Edge singularities in anisotropic composities, International Journal of Solids and Structures Vol.17, No.11, 1057-1068(1981)

    Ting,T.C.T.,The wedge subjected to traction : a paradox re-examined, Journal of Elasticity Vol.14, 235-247(1984)

    Ting,.C.T.,The critical angle of the anisotropic elastic wedge subject to uniform tractions, Journal of Elasticity Vol.20, 113-130(1988)

    Yao,W.A. and Xu,C.,A restudy of the paradox on an elastic wedge based on the hamiltonian system, Journal of Applied Mechanics Vol.68, 678-681(2001)

    姚偉岸,極座標哈密頓體系約當型與彈性楔的佯謬解 力學學報 Vol.23, No.1(2001)

    張錫宏,異向性與功能材料壓電熱彈性力學之狀態空間解析模式與應用 國立成功大學土木工程研究所博士論文(2006)

    下載圖示 校內:2008-08-28公開
    校外:2008-08-28公開
    QR CODE