研究生: |
林立堃 Lin, Li-Kun |
---|---|
論文名稱: |
在點雲資訊限制下的建築模型合成 Building Model Synthesis with Point Cloud Constraint |
指導教授: |
李同益
Lee, Tong-Yee |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 50 |
中文關鍵詞: | 細胞 、點雲 、過擬合 、雕刻 、對稱性 |
外文關鍵詞: | Cell, Point Cloud, Overfitting, Carve, Symmetry |
相關次數: | 點閱:97 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
模型合成就如同貼圖合成一般,同樣是給定一個作為輸入的範例,然後系統就會按照範例上的一些特徵生成更大尺寸的結果出來。現在模型合成的方法也已經被提出了的許多,但都是使用範例上的特徵資料近乎無所限制地在空間中隨意生成,如此我們很難得到一個特定的外型或是使用這些特徵生成出一個我們想要的外型出來。
在這篇論文裡,我們所要處理的模型都是建築物的模型,我們把要合成的特徵來源改成了某一模型的材質貼圖上,並且由這個材質上面的結構得出了結構之間的位置關係,我們生成了新的建築模型且近似於指定建築之點雲資料的外觀形狀。
我們提出了一個新的逼近方法去產生近似點雲資料的模型,先以很多個相同尺寸的細胞即小方塊去堆積出點雲的外觀形狀,然後從一個過擬合的狀態不斷的進行表面雕刻得到逼近的模型結果;然後再從對稱性去分析建築物影像上的結構,然後將其自動貼到新產生出來的模型上。
Similar to texture synthesis, model synthesis is the process of synthesizing 3D models by an input 3D model. The methods for model synthesis have been proposed much many. Because the model generated by model synthesis are often extended them self without limitation, it is hard to get specified appearance of the synthesized model.
In this thesis, the model which we will process is the building’s model. The feature of synthesis comes from a texture material of a building’s model, and we extract the positional relationship from the material’s structure, generating a new building model with the specified building’s appearance.
We propose a new approximation method which uses several cells with same size to pile a model with similar appearance of the point cloud data. In order to approximate the detail of the point cloud, we make the generated model overfitting, and then carving it with specific conditions iteratively. Finally, we use symmetry to analyze the structure from the image of a building, and then we could texture them on the new generated model automatically.
[1] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin. The ball-pivoting algorithm for surface reconstruction. IEEE Transactions on Visualization and Computer Graphics, Vol. 5, pages 349-359, 1999.
[2] M. Botsch, B Chen, C. Stoll, Z. Karni, C. Rossl, H. Yamauchi and H. Seidel. Template deformation for point cloud fitting. Symposium on Point-Based Graphics, 2006.
[3] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCallum and T. R. Evans. Reconstruction and representation of 3D objects with radial basis function. Proceedings of ACM SIGGRAPH ’01, pages 67-76, 2001.
[4] J. Chen, H. Lai and C. Lin.Point Cloud Modeling Using Algebraic Template. International Journal if Innovative Computing, Information and Control, Vol. 7, 2011.
[5] P. Prusinkiewicz and A. Lindenmayer. The Algorithmic Beauty of Plants. Spring Verlag, 1991.
[6] S. Fleishman, D. Cohen-Or and C. T. Silva. Robust moving least-squares fitting with sharp features. Proceedings of ACM SIGGRAPH ’05, pages 544-552, 2005.
[7] G. Guennebaud and M. Gross. Algebraic point set surfaces. Proceedings of ACM SIGGRAPH ’07, 2007.
[8] H. Hpooe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Surface reconstruction from unorganized points. Proceedings of ACM SIGGRAPH ’92, pages 71-78, 1992.
[9] S. Kullback. Information theory and statistics. Jphn Wiley and Son., New York, 1959.
[10] C. Kuo and H. Yau. A Delaunay-based region-growing approach to surface reconstruction from unorganized points. Computer-Aided Design, Vol. 37, pages 825-835, 2005.
[11] V. Kraevoy and A. Sheffer. Template-based mesh completion. Proceedings of the third Eurographics / ACM SIGGRAPH Symposium on Geometry Processing, 2005.
[12] M. Kazhdan, M. Bolitho and H. Hoppe. Poisson surface reconstruction. Proceedings of the Eurographics Symposium on Geometry Processing., pages 61-70, 2006.
[13] R. Mech, and P. Prusinkiewicz. Visual models of plants interacting with their environment. Proceedings of ACM SIGGRAPH 96, pages 397-410, 1996.
[14] P. Muller, P. Wonka, S. Haegler, A. Ulmer, and L. V. Gool. Procedural Modeling of Buildings. Proceedings of ACM SIGGRAPH ‘06, pages 614-623, 2006.
[15] P. Muller, G. Zeng, P. Wonka, and L. V. Gool. Image-based Procedural Modeling of Facades. Proceedings of ACM SIGGRAPH ‘07, 2007.
[16] P. Prusinkiewicz, M. James, and R. Mech. synthetic topiary. Proceedings of ACM SIGGRAPH 94, pages 351-358, 1994.
[17] P. Prusinkiewicz, L. Mundermann, R. Karwowski, and B. Lane. The use of positional information in the modeling of plants. Proceedings of ACM SIGGRAPH 2011, pages 289-300, 2001.
[18] Y. I. H. Parish and P. Muller. Procedural modeling of cities. Proceedings of ACM SIGGRAPH 2001, pages 301-308, 2001.
[19] M. Pauly, N. J. Mitra, J. Giesen, M. Gross and L. J. Guibas. Example-based 3D scan completion. Proceedings of the third Eurographics / ACM SIGGRAPH Symposium on Geometry Processing, 2005.
[20] R. Ramamoorthi, and J. Arvo. Creating Generative Models from Range Images. In Proceedings of ACM SIGGRAPH ‘99, pages 195-204, 1999.
[21] M. T. Wong, D. E. Zongker, and D. H. Salesin. Computer-generated floral ornament. Proceedings of ACM SIGGRAPH 98, pages 423-434, 1998.