| 研究生: |
王偉璇 Wang, Wei-Shiuan |
|---|---|
| 論文名稱: |
利用缺氧調控端粒酶反轉錄酶啟動子之溶瘤腺病毒治療癌症 Oncolytic adenovirus driven by hypoxia-inducible hTERT promoter for cancer therapy |
| 指導教授: |
吳昭良
Wu, Chao-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 溶瘤腺病毒 、缺氧 |
| 外文關鍵詞: | hypoxia, oncolytic adenovirus |
| 相關次數: | 點閱:112 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
腫瘤生長時內部會有局部地區呈現缺氧狀態,而這個缺氧狀態對於腫瘤的惡性化以及腫瘤細胞對抗化學治療及放射線治療上扮演著重要的角色。當腫瘤組織處於缺氧狀態的時候,缺氧調控因子 hypoxia-inducible factor-1 (HIF-1)會穩定存在並且累積。 HIF-1是一個heterodimeric 的轉錄因子,在缺氧的情況HIF-1會和hypoxia response element (HRE)作用以調控下游基因的表現。人類的端粒酶反轉錄酶 (human telomerase reverse transcriptase, hTERT) 是端粒酶中主要用來進行催化作用的次單位,大約有百分之九十的癌症細胞上都有大量hTERT的表現。因此hTERT的過度表現通常被認為是腫瘤形成的指標。研究指出在缺氧狀態下端粒酶的活性增加,主要是經由調控hTERT轉錄活性,而HIF-1為之中一個重要的轉錄因子。為了要解決腫瘤在缺氧情況會對化學治療及放射線治療等治療方式產生抵抗反應這個難題,所以我們針對具有缺氧狀態和高活性hTERT的腫瘤設計了一個新的治療策略。我們將6xHRE接上hTERT 的啟動子 (6xHRE-hTERT promoter)去增加它的轉錄活性,並且建構一由這個改造過的啟動子所驅動的溶瘤腺病毒(Ad.WiSh)來治療腫瘤。我們證明在缺氧情況下6xHRE-hTERT 啟動子的活性的確高於原始啟動子的活性。相同的,Ad.WiSh 在缺氧狀態下產生的毒殺作用的能力也優於非缺氧的情況。而在動物實驗中,我們可以發現Ad.WiSh 能更有效的抑制腫瘤的生長以及延長老鼠生存時間。當cisplatin這個常用來治療腫瘤的化學藥物加上hypoxia的情況時,會使的腫瘤細胞有更多的HIF-1表現,進而使得6xHRE-hTERT 啟動子的活性增加,也使得Ad.WiSh對腫瘤細胞有更好的毒殺作用。在動物模式中,同時給予Ad.WiSh和cisplatin做治療時的確可以達到更好的療效。由結果顯示,我們利用6xHRE-hTERT 啟動子驅動的溶瘤腺病毒對於腫瘤的治療有所幫助。
Hypoxia, a condition that oxygen density is low at local areas, plays a critical role in tumor malignancy and is associated with resistance of cancer cells to conventional chemotherapy and radiotherapy. Hypoxia-inducible factor-1 (HIF-1) is stabilized and accumulated when tissues are exposed to hypoxia. HIF-1 is a heterodimeric transcription factor that regulates the physiologic reaction to hypoxia by binding to hypoxia response element (HRE) of target genes. Human telomerase reverse transcriptase (hTERT), the catalytic subunit of the telomerase is transcriptionally upregulated in about 90% of cancers. Therefore, overexpression of hTERT is considered as a tumorigenesis marker. It has been suggested that hypoxia activates telomerase via transcriptional activation of hTERT, and that HIF-1 plays an important role as a transcription factor. Novel therapeutic strategies to target tumor cells in hypoxia regions with high TERT promoter activity to overcome their resistance to chemotherapy and radiotherapy are urgently needed. Therefore, we have exploited 6 copies of HRE ligated to hTERT promoter to modify the transcription activity of hTERT and constructed AdWiSh (Ad5-6xHRE-hTERT), an oncolytic adenovirus driven by this modified promoter. The transcription activity of the 6xHRE-hTERT promoter has been proved higher than that of the original promoter in hypoxia conditions. Similarly the oncolytic efficacy of AdWiSh under hypoxia is better than under normoxia. Intratumoral injection of AdWiSh resulted in suppressing of tumor growth and prolonging survival in mice bearing subcutaneous Lewis lung carcinoma. Cisplatin combined with hypoxia stimulated HIF-1α upregulation and enhanced 6xHRE-hTERT promoter activity, and Ad.WiSh could have better cytolytic efficacy in this condition. Combination of hypoxia-inducible adenovirus and chemotherapeutic drug cisplatin exhibited higher antitumor efficacy compared with either treatment alone. Taken together, these results suggest that AdWiSh, a 6xHRE-hTERT-driven oncolytic adenovirus may have therapeutic potential for solid tumors.
Bardos, J.I. and Ashcroft, M. (2004). Hypoxia-inducible factor-1 and oncogenic signalling. Bioessays 26, 262-269.
Bischoff, J.R., Kirn, D.H., Williams, A., Heise, C., Horn, S., Muna, M., Ng, L., Nye, J.A., Sampson-Johannes, A., Fattaey, A., and McCormick, F. (1996). An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274, 373-376.
Bishop, J.M. (1995). Cancer: the rise of the genetic paradigm. Genes Dev. 9, 1309-1315.
Carmeliet, P., Dor, Y., Herbert, J.M., Fukumura, D., Brusselmans, K., Dewerchin, M., Neeman, M., Bono, F., Abramovitch, R., Maxwell, P., Koch, C.J., Ratcliffe, P., Moons, L., Jain, R.K., Collen, D., and Keshert, E. (1998). Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394, 485-490.
Cho, W.K., Seong, Y.R., Lee, Y.H., Kim, M.J., Hwang, K.S., Yoo, J., Choi,S., Jung,C.R., and Im,D.S. (2004). Oncolytic effects of adenovirus mutant capable of replicating in hypoxic and normoxic regions of solid tumor. Mol. Ther. 10, 938-949.
Goodrum, F.D. and Ornelles, D.A. (1998). p53 status does not determine outcome of E1B 55-kilodalton mutant adenovirus lytic infection. J. Virol. 72, 9479-9490.
Greider, C.W. (1996). Telomere length regulation. Annu. Rev. Biochem. 65, 337-365.
Hermiston, T.W. and Kuhn, I. (2002). Armed therapeutic viruses: strategies and challenges to arming oncolytic viruses with therapeutic genes. Cancer Gene Ther. 9, 1022-1035.
Horikawa, I., Cable, P.L., Afshari, C., and Barrett, J.C. (1999). Cloning and characterization of the promoter region of human telomerase reverse transcriptase gene. Cancer Res. 59, 826-830.
Huang, T.G., Savontaus, M.J., Shinozaki, K., Sauter, B.V., and Woo, S.L. (2003). Telomerase-dependent oncolytic adenovirus for cancer treatment. Gene Ther. 10, 1241-1247.
HUEBNER, R.J., ROWE, W.P., SCHATTEN, W.E., SMITH, R.R., and THOMAS, L.B. (1956). Studies on the use of viruses in the treatment of carcinoma of the cervix. Cancer 9, 1211-1218.
Jiang, B.H., Semenza, G.L., Bauer, C., and Marti, H.H. (1996). Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am. J. Physiol 271, C1172-C1180.
Kimura, H., Weisz, A., Ogura, T., Hitomi, Y., Kurashima, Y., Hashimoto, K., D'Acquisto, F., Makuuchi, M., and Esumi, H. (2001). Identification of hypoxia-inducible factor 1 ancillary sequence and its function in vascular endothelial growth factor gene induction by hypoxia and nitric oxide. J. Biol. Chem. 276, 2292-2298.
Lanson, N.A. Jr., Friedlander, P.L., Schwarzenberger, P., Kolls, J.K., and Wang, G. (2003). Replication of an adenoviral vector controlled by the human telomerase reverse transcriptase promoter causes tumor-selective tumor lysis. Cancer Res. 63, 7936-7941.
Meyerson, M., Counter, C.M., Eaton, E.N., Ellisen, L.W., Steiner, P., Caddle, S.D., Ziaugra, L., Beijersbergen, R.L., Davidoff, M.J., Liu, Q., Bacchetti, S., Haber, D.A., and Weinberg, R.A. (1997). hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell 90, 785-795.
Nishi, H., Nakada, T., Kyo, S., Inoue, M., Shay, J.W., and Isaka, K. (2004). Hypoxia-inducible factor 1 mediates upregulation of telomerase (hTERT). Mol. Cell Biol. 24, 6076-6083.
O'Shea, C.C., Johnson, L., Bagus, B., Choi, S., Nicholas, C., Shen, A., Boyle, L., Pandey, K., Soria, C., Kunich, J., Shen, Y., Habets, G., Ginzinger, D., and McCormick, F. (2004). Late viral RNA export, rather than p53 inactivation, determines ONYX-015 tumor selectivity. Cancer Cell 6, 611-623.
Post, D.E., Devi, N.S., Li, Z., Brat, D.J., Kaur, B., Nicholson, A., Olson, J.J., Zhang, Z., and Van Meir, E.G. (2004). Cancer therapy with a replicating oncolytic adenovirus targeting the hypoxic microenvironment of tumors. Clin. Cancer Res. 10, 8603-8612.
Post, D.E. and Van Meir, E.G. (2003). A novel hypoxia-inducible factor (HIF) activated oncolytic adenovirus for cancer therapy. Oncogene 22, 2065-2072.
Ravi, R., Mookerjee, B., Bhujwalla, Z.M., Sutter, C.H., Artemov, D., Zeng, Q., Dillehay, L.E., Madan, A., Semenza, G.L., and Bedi, A. (2000). Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes Dev. 14, 34-44.
Reid, T., Galanis, E., Abbruzzese, J., Sze, D., Andrews, J., Romel, L., Hatfield, M., Rubin, J., and Kirn, D. (2001). Intra-arterial administration of a replication-selective adenovirus (dl1520) in patients with colorectal carcinoma metastatic to the liver: a phase I trial. Gene Ther. 8, 1618-1626.
Ries, S. and Korn, W.M. (2002). ONYX-015: mechanisms of action and clinical potential of a replication-selective adenovirus. Br. J. Cancer 86, 5-11.
Rudin, C.M., Cohen, E.E., Papadimitrakopoulou, V.A., Silverman S Jr, Recant, W., El Naggar ,A.K., Stenson ,K., Lippman ,S.M., Hong ,W.K., and Vokes ,E.E. (2003). An attenuated adenovirus, ONYX-015, as mouthwash therapy for premalignant oral dysplasia. J. Clin. Oncol. 21, 4546-4552.
Russell, W.C. (2000). Update on adenovirus and its vectors. J. Gen. Virol. 81, 2573-2604.
Seimiya, H., Tanji, M., Oh-hara, T., Tomida, A., Naasani, I., and Tsuruo, T. (1999). Hypoxia up-regulates telomerase activity via mitogen-activated protein kinase signaling in human solid tumor cells. Biochem. Biophys. Res. Commun. 260, 365-370.
Semenza, G.L. (2003). Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 3, 721-732.
Semenza, G.L., Jiang, B.H., Leung, S.W., Passantino, R., Concordet, J.P., Maire, P., and Giallongo, A. (1996). Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J. Biol. Chem. 271, 32529-32537.
Shay, J.W. (1997). Telomerase in human development and cancer. J. Cell Physiol 173, 266-270.
Shay, J.W., Werbin, H., and Wright, W.E. (1997). Telomerase assays in the diagnosis and prognosis of cancer. Ciba Found. Symp. 211, 148-155.
Takakura, M., Kyo, S., Kanaya, T., Hirano, H., Takeda, J., Yutsudo, M., and Inoue, M. (1999). Cloning of human telomerase catalytic subunit (hTERT) gene promoter and identification of proximal core promoter sequences essential for transcriptional activation in immortalized and cancer cells. Cancer Res. 59, 551-557.
Turnell, A.S., Grand, R.J., and Gallimore, P.H. (1999). The replicative capacities of large E1B-null group A and group C adenoviruses are independent of host cell p53 status. J. Virol. 73, 2074-2083.
Vile, R.G., Russell, S.J., and Lemoine, N.R. (2000). Cancer gene therapy: hard lessons and new courses. Gene Ther. 7, 2-8.
Wang, G.L., Jiang, B.H., Rue, E.A., and Semenza, G.L. (1995). Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. U. S. A 92, 5510-5514.
Yang, Z.F., Poon, R.T., To, J., Ho, D.W., and Fan, S.T. (2004). The potential role of hypoxia inducible factor 1alpha in tumor progression after hypoxia and chemotherapy in hepatocellular carcinoma. Cancer Res. 64, 5496-5503.
Zou, W., Luo, C., Zhang, Z., Liu, J., Gu, J., Pei, Z., Qian, C., and Liu, X. (2004). A novel oncolytic adenovirus targeting to telomerase activity in tumor cells with potent. Oncogene 23, 457-464.