| 研究生: |
孟德睿 Meng, De-Ruei |
|---|---|
| 論文名稱: |
微生物揮發性物質對抗酵母菌和病原性真菌的分子作用機制 Antifungal activity and molecular mechanism of action of microbial volatiles against Saccharomyces cerevisiae and pathogenic fungal |
| 指導教授: |
黃浩仁
Huang, Hao-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 微生物揮發性物質 、酵母菌 、生物性防治 、絲裂原活化蛋白激酶訊息傳遞途徑 |
| 外文關鍵詞: | microbial volatile compounds, Saccharomyces cerevisiae, biological control, mitogen-activated protein kinase signal transduction pathways |
| 相關次數: | 點閱:122 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
植物生長的過程中會遭遇各式各樣的生物性與非生物性逆境,其中包含植物病原性真菌感染植物,而影響植物生長,最終導致植物死亡。過去,化學農藥的濫用,造成生態環境的污染以及影響人類的健康。近年來,科學家致力於研究及發展有效、環境友善及人類健康的生物性農藥。越來越多的證據顯示,微生物,特別是細菌會釋放多種揮發性物質,這些揮發性物質對植物病原性真菌具有重要的生物活性,但植物病原性真菌對微生物揮發性物質的感知及回應機制仍有許多待瞭解之處。本研究以 Paenarthrobacter ureafaciens 作為微生物揮發性物質的來源,以模式生物酵母菌 (Saccharomyces cerevisiae) 探討真菌感知到微生物揮發性物質後產生的生理生化及基因轉錄層次的變化。野生型酵母菌與 P.ureafaciens 揮發性物質共培養下,酵母菌的生長發育受到輕微抑制,並且會伴隨誘發氧化壓力的產生。接者透過五種酵母菌 MAPK 突變株與 P.ureafaciens 揮發性物質共培養,可以發現主要會抑制 mpk1 和次要抑制 hog1 突變株的生長。根據 qPCR 分析酵母菌之基因表現發現,在 P.ureafaciens 揮發性物質影響下,酵母菌 cell wall integrity 途徑及相關轉錄因子和細胞壁的生合成相關基因轉錄量會受到正向調控。另一方面,P.ureafaciens 揮發性物質會誘發酵母菌抗氧化系統相關基因的活化,同時 P.ureafaciens 揮發性物質也會誘導酵母菌細胞週期及生化代謝相關基因的轉錄表現。 mpk1 突變株會降低 P.ureafaciens 揮發性物質誘導的酵母菌細胞壁合成相關基因的轉錄量,因此知道 cell wall integrity pathway 能參與調控酵母菌對於 P.ureafaciens 揮發性物質的反應過程。本研究對微生物揮發性物質對酵母菌和病原性真菌的分子作用機制提供了有價值的資訊。
During growth, plants will encounter various biological and non-biological stresses, including phytopathogenic fungi infecting plants, which affect plant growth, leading to plant death. In these years, chemical pesticides caused environmental pollution and also affected human health. Scientists have devoted themselves to researching and developing practical, environmentally friendly, and human-health harmless biological pesticides in recent years. Some studies show that microorganisms, especially bacteria, release various volatile compounds (VCs), which play an essential role in the biological activity of these phytopathogenic fungi. However, phytopathogenic fungi' perception and response mechanism to microbial volatile compounds remains unclear. In this study, Paenarthrobacter ureafaciens was used as the source of microbial volatile to treat yeast (Saccharomyces cerevisiae) for investigating changes in physiological, biochemical, and gene transcription levels after sensing the VCs. After exposure to P. ureafaciens VCs, the yeast growth was inhibited slightly, and oxidative stresses were also detected. During the co-cultivation experiment of five yeast MAPK mutant strains with P.ureafaciens VCs, growth inhibition was recorded in the mpk1 and minor hog1 mutant strains. According to the qPCR analysis of yeast gene expression, under the treatment of P.ureafaciens VCs, the cell wall integrity pathway and related transcription factors and cell wall biosynthesis-related gene transcription were up-regulated. On the other hand, P.ureafaciens VCs can activate genes related to the antioxidant system, cell cycle, and biochemical metabolism. In mpk1 mutant strains, the genes related to cell wall synthesis transcription were down-regulated under P.ureafaciens VCs. In conclusion, the cell wall integrity pathway might participate in regulating yeast response to P.ureafaciens VCs. This study provides valuable information related to the mechanism of action of microbial volatiles against yeast and pathogenic fungi.
Alavanja, M. C., Hoppin, J. A., & Kamel, F. (2004). Health effects of chronic pesticide exposure: cancer and neurotoxicity. Annu Rev Public Health, 25, 155-197.
Alic, N., Higgins, V. J., Pichova, A., Breitenbach, M., & Dawes, I. W. (2003). Lipid hydroperoxides activate the mitogen-activated protein kinase Mpk1p in Saccharomyces cerevisiae. Journal of Biological Chemistry, 278(43), 41849-41855.
Alonso-Monge, R., Navarro-García, F., Román, E., Negredo, A. I., Eisman, B., Nombela, C., & Pla, J. (2003). The Hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans. Eukaryot Cell, 2(2), 351-361.
Altmann, K., Dürr, M., & Westermann, B. (2007). Saccharomyces cerevisiae as a model organism to study mitochondrial biology: general considerations and basic procedures. Methods Mol Biol, 372, 81-90. doi:10.1007/978-1-59745-365-3_6
Arrebola, E., Tienda, S., Vida, C., De Vicente, A., & Cazorla, F. M. (2019). Fitness features involved in the biocontrol interaction of Pseudomonas chlororaphis with host plants: the case study of PcPCL1606. Frontiers in microbiology, 10, 719.
Baranwal, S., Azad, G. K., Singh, V., & Tomar, R. S. (2014). Signaling of chloroquine-induced stress in the yeast Saccharomyces cerevisiae requires the Hog1 and Slt2 mitogen-activated protein kinase pathways. Antimicrobial agents and chemotherapy, 58(9), 5552-5566.
Bardwell, L. (2004). A walk-through of the yeast mating pheromone response pathway. Peptides, 25(9), 1465-1476.
Bardwell, L., & Thorner, J. (1996). A conserved motif at the amino termini of MEKs might mediate high-affinity interaction with the cognate MAPKs. Trends in biochemical sciences, 21(10), 373-374.
Barka, E. A., Vatsa, P., Sanchez, L., Gaveau-Vaillant, N., Jacquard, C., Klenk, H.-P., . . . van Wezel, G. P. (2016). Taxonomy, physiology, and natural products of Actinobacteria. Microbiology and Molecular Biology Reviews, 80(1), 1-43.
Beck, H., Dobritzsch, D., & Piskur, J. (2008). Saccharomyces kluyveri as a model organism to study pyrimidine degradation. FEMS Yeast Res, 8(8), 1209-1213. doi:10.1111/j.1567-1364.2008.00442.x
Bermejo, C., Rodríguez, E., García, R., Rodríguez-Peña, J. M., Rodriguez de la Concepcion, M. L., Rivas, C., . . . Arroyo, J. (2008). The sequential activation of the yeast HOG and SLT2 pathways is required for cell survival to cell wall stress. Molecular biology of the cell, 19(3), 1113-1124.
Biddick, R., & Young, E. T. (2009). The disorderly study of ordered recruitment. Yeast, 26(4), 205-220.
Bilsland, E., Molin, C., Swaminathan, S., Ramne, A., & Sunnerhagen, P. (2004). Rck1 and Rck2 MAPKAP kinases and the HOG pathway are required for oxidative stress resistance. Mol Microbiol, 53(6), 1743-1756. doi:10.1111/j.1365-2958.2004.04238.x
Bitas, V., Kim, H.-S., Bennett, J. W., & Kang, S. (2013). Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health. Molecular Plant-Microbe Interactions, 26(8), 835-843.
Blom, D., Fabbri, C., Connor, E. C., Schiestl, F. P., Klauser, D. R., Boller, T., . . . Weisskopf, L. (2011). Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ Microbiol, 13(11), 3047-3058.
Boorsma, A., Nobel, H. d., Riet, B. t., Bargmann, B., Brul, S., Hellingwerf, K. J., & Klis, F. M. (2004). Characterization of the transcriptional response to cell wall stress in Saccharomyces cerevisiae. Yeast, 21(5), 413-427.
Brader, G., Compant, S., Mitter, B., Trognitz, F., & Sessitsch, A. (2014). Metabolic potential of endophytic bacteria. Current opinion in biotechnology, 27, 30-37.
Brewster, J. L., de Valoir, T., Dwyer, N. D., Winter, E., & Gustin, M. C. (1993). An osmosensing signal transduction pathway in yeast. Science, 259(5102), 1760-1763.
Brocard-Masson, C., & Dumas, B. (2006). The fascinating world of steroids: S. cerevisiae as a model organism for the study of hydrocortisone biosynthesis. Biotechnology and Genetic Engineering Reviews, 22(1), 213-252.
Burack, W. R., & Shaw, A. S. (2000). Signal transduction: hanging on a scaffold. Current opinion in cell biology, 12(2), 211-216.
Cabib, E., Blanco, N., Grau, C., Rodríguez‐Peña, J. M., & Arroyo, J. (2007). Crh1p and Crh2p are required for the cross‐linking of chitin to β (1‐6) glucan in the Saccharomyces cerevisiae cell wall. Mol Microbiol, 63(3), 921-935.
Caffrey, D. R., O'neill, L. A., & Shields, D. C. (1999). The evolution of the MAP kinase pathways: coduplication of interacting proteins leads to new signaling cascades. Journal of molecular evolution, 49(5), 567-582.
Carmona-Gutierrez, D., Eisenberg, T., Büttner, S., Meisinger, C., Kroemer, G., & Madeo, F. (2010). Apoptosis in yeast: triggers, pathways, subroutines. Cell Death & Differentiation, 17(5), 763-773.
Caulier, S., Nannan, C., Gillis, A., Licciardi, F., Bragard, C., & Mahillon, J. (2019). Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group. Front Microbiol, 10, 302.
Chandra, P. (2017). Microbial volatiles as chemical weapons against pathogenic fungi. In Volatiles and food security (pp. 227-254): Springer.
Chellappan, S. P. (2001). HOG on the promoter: regulation of the osmotic stress response. Science Signaling, 2001(93), pe1-pe1.
Chen, F., Tholl, D., Bohlmann, J., & Pichersky, E. (2011). The family of terpene synthases in plants: a mid‐size family of genes for specialized metabolism that is highly diversified throughout the kingdom. The Plant Journal, 66(1), 212-229.
Chen, F., Tholl, D., D'Auria, J. C., Farooq, A., Pichersky, E., & Gershenzon, J. (2003). Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers. The plant cell, 15(2), 481-494.
Chen, R. E., & Thorner, J. (2007). Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1773(8), 1311-1340.
Cobb, M. H. (1999). MAP kinase pathways. Progress in biophysics and molecular biology, 71(3-4), 479-500.
Cogburn, L. A., Porter, T. E., Duclos, M. J., Simon, J., Burgess, S. C., Zhu, J. J., . . . Burnside, J. (2007). Functional genomics of the chicken--a model organism. Poult Sci, 86(10), 2059-2094. doi:10.1093/ps/86.10.2059
Cuevas, B., Abell, A., & Johnson, G. (2007). Role of mitogen-activated protein kinase kinase kinases in signal integration. Oncogene, 26(22), 3159-3171.
de Boer, W., Li, X., Meisner, A., & Garbeva, P. (2019). Pathogen suppression by microbial volatile organic compounds in soils. FEMS microbiology ecology, 95(8), fiz105.
Di Pasqua, R., Hoskins, N., Betts, G., & Mauriello, G. (2006). Changes in membrane fatty acids composition of microbial cells induced by addiction of thymol, carvacrol, limonene, cinnamaldehyde, and eugenol in the growing media. J Agric Food Chem, 54(7), 2745-2749.
Dichtl, K., Samantaray, S., & Wagener, J. (2016). Cell wall integrity signalling in human pathogenic fungi. Cellular microbiology, 18(9), 1228-1238.
dos Santos, S. C., Teixeira, M. C., Cabrito, T. R., & Sá-Correia, I. (2012). Yeast toxicogenomics: genome-wide responses to chemical stresses with impact in environmental health, pharmacology, and biotechnology. Frontiers in genetics, 3, 63.
Dwyer, D., & Bradley, R. (2000). Chemical properties of alcohols and their protein binding sites. Cellular and Molecular Life Sciences, 57(2), 265.
Ecker, M., Deutzmann, R., Lehle, L., Mrsa, V., & Tanner, W. (2006). Pir proteins of Saccharomyces cerevisiae are attached to β-1, 3-glucan by a new protein-carbohydrate linkage. Journal of Biological Chemistry, 281(17), 11523-11529.
Effmert, U., Kalderás, J., Warnke, R., & Piechulla, B. (2012). Volatile mediated interactions between bacteria and fungi in the soil. Journal of chemical ecology, 38(6), 665-703.
Elion, E. A. (2001). The ste5p scaffold. Journal of cell science, 114(22), 3967-3978.
Ezaki, B., Gardner, R. C., Ezaki, Y., Kondo, H., & Matsumoto, H. (1998). Protective roles of two aluminum (Al)-induced genes, HSP150 and SED1 of Saccharomyces cerevisiae, in Al and oxidative stresses. FEMS Microbiol Lett, 159(1), 99-105.
Fernando, W. D., Ramarathnam, R., Krishnamoorthy, A. S., & Savchuk, S. C. (2005). Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biology and Biochemistry, 37(5), 955-964.
Ferrigno, P., Posas, F., Koepp, D., Saito, H., & Silver, P. A. (1998). Regulated nucleo/cytoplasmic exchange of HOG1 MAPK requires the importin β homologs NMD5 and XPO1. The EMBO journal, 17(19), 5606-5614.
Galluzzi, L., Vitale, I., Abrams, J., Alnemri, E., Baehrecke, E., Blagosklonny, M., . . . Fulda, S. (2012). Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death & Differentiation, 19(1), 107-120.
García, R., Bermejo, C., Grau, C., Pérez, R., Rodríguez-Peña, J. M., Francois, J., . . . Arroyo, J. (2004). The global transcriptional response to transient cell wall damage in Saccharomyces cerevisiae and its regulation by the cell integrity signaling pathway. Journal of Biological Chemistry, 279(15), 15183-15195.
Goffeau, A., Barrell, B. G., Bussey, H., Davis, R. W., Dujon, B., Feldmann, H., . . . Johnston, M. (1996). Life with 6000 genes. Science, 274(5287), 546-567.
Gong, A.-D., Dong, F.-Y., Hu, M.-J., Kong, X.-W., Wei, F.-F., Gong, S.-J., . . . Liao, Y.-C. (2019). Antifungal activity of volatile emitted from Enterobacter asburiae Vt-7 against Aspergillus flavus and aflatoxins in peanuts during storage. Food Control, 106, 106718.
Groenhagen, U., Baumgartner, R., Bailly, A., Gardiner, A., Eberl, L., Schulz, S., & Weisskopf, L. (2013). Production of bioactive volatiles by different Burkholderia ambifaria strains. J Chem Ecol, 39(7), 892-906.
Gustin, M. C., Albertyn, J., Alexander, M., & Davenport, K. (1998). MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 62(4), 1264-1300.
Hahn, J.-S., & Thiele, D. J. (2002). Regulation of the Saccharomyces cerevisiae Slt2 kinase pathway by the stress-inducible Sdp1 dual specificity phosphatase. Journal of Biological Chemistry, 277(24), 21278-21284.
Han, J., Lee, J.-D., Bibbs, L., & Ulevitch, R. (1994). A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science, 265(5173), 808-811.
Handelsman, J., & Stabb, E. V. (1996). Biocontrol of soilborne plant pathogens. The plant cell, 8(10), 1855.
Hanssum, A., Zhong, Z., Rousseau, A., Krzyzosiak, A., Sigurdardottir, A., & Bertolotti, A. (2014). An inducible chaperone adapts proteasome assembly to stress. Molecular cell, 55(4), 566-577.
Harrison, J. C., Zyla, T. R., Bardes, E. S., & Lew, D. J. (2004). Stress-specific activation mechanisms for the “cell integrity” MAPK pathway. Journal of Biological Chemistry, 279(4), 2616-2622.
Heipieper, H. J., Weber, F. J., Sikkema, J., Keweloh, H., & de Bont, J. A. (1994). Mechanisms of resistance of whole cells to toxic organic solvents. Trends in Biotechnology, 12(10), 409-415.
Herrmann, A. (2011). The chemistry and biology of volatiles: John Wiley & Sons.
Hohmann, S. (2002a). Osmotic adaptation in yeast-control of the yeast osmolyte system. International review of cytology, 215, 149-187.
Hohmann, S. (2002b). Osmotic stress signaling and osmoadaptation in yeasts. Microbiology and Molecular Biology Reviews, 66(2), 300-372.
Hohmann, S., Krantz, M., & Nordlander, B. (2007). Yeast osmoregulation. Methods in enzymology, 428, 29-45.
Huang, L., Li, Q.-C., Hou, Y., Li, G.-Q., Yang, J.-Y., Li, D.-W., & Ye, J.-R. (2017). Bacillus velezensis strain HYEB5-6 as a potential biocontrol agent against anthracnose on Euonymus japonicus. Biocontrol Science and Technology, 27(5), 636-653.
Ingram, L. O. N., & Buttke, T. M. (1985). Effects of alcohols on micro-organisms. Advances in microbial physiology, 25, 253-300.
Insam, H., & Seewald, M. S. (2010). Volatile organic compounds (VOCs) in soils. Biology and fertility of soils, 46(3), 199-213.
Jönsson, K. I. (2007). Tardigrades as a potential model organism in space research. Astrobiology, 7(5), 757-766. doi:10.1089/ast.2006.0088
Jeon, C.-W., Kim, D.-R., & Kwak, Y.-S. (2019). Valinomycin, produced by Streptomyces sp. S8, a key antifungal metabolite in large patch disease suppressiveness. World Journal of Microbiology and Biotechnology, 35(8), 1-10.
Jiang, C.-H., Liao, M.-J., Wang, H.-K., Zheng, M.-Z., Xu, J.-J., & Guo, J.-H. (2018). Bacillus velezensis, a potential and efficient biocontrol agent in control of pepper gray mold caused by Botrytis cinerea. Biological Control, 126, 147-157.
Jin, T., Xu, X., Fang, J., Isik, N., Yan, J., Brzostowski, J. A., & Hereld, D. (2009). How human leukocytes track down and destroy pathogens: lessons learned from the model organism Dictyostelium discoideum. Immunol Res, 43(1-3), 118-127. doi:10.1007/s12026-008-8056-7
Jung, U. S., & Levin, D. E. (1999). Genome‐wide analysis of gene expression regulated by the yeast cell wall integrity signalling pathway. Mol Microbiol, 34(5), 1049-1057.
Köhler, H.-R., & Triebskorn, R. (2013). Wildlife ecotoxicology of pesticides: can we track effects to the population level and beyond? Science, 341(6147), 759-765.
Kai, M., Crespo, E., Cristescu, S. M., Harren, F. J., Francke, W., & Piechulla, B. (2010). Serratia odorifera: analysis of volatile emission and biological impact of volatile compounds on Arabidopsis thaliana. Appl Microbiol Biotechnol, 88(4), 965-976.
Kapteyn, J., Van Egmond, P., Sievi, E., Van Den Ende, H., Makarow, M., & Klis, F. (1999). The contribution of the O‐glycosylated protein Pir2p/Hsp150 to the construction of the yeast cell wall in wild‐type cells and β1, 6‐glucan‐deficient mutants. Mol Microbiol, 31(6), 1835-1844.
Keshet, Y., & Seger, R. (2010). The MAP kinase signaling cascades: a system of hundreds of components regulates a diverse array of physiological functions. MAP kinase signaling protocols, 3-38.
Keyse, S. M. (2000). Protein phosphatases and the regulation of mitogen-activated protein kinase signalling. Current opinion in cell biology, 12(2), 186-192.
Kim, K.-Y., Truman, A. W., & Levin, D. E. (2008). Yeast Mpk1 mitogen-activated protein kinase activates transcription through Swi4/Swi6 by a noncatalytic mechanism that requires upstream signal. Molecular and cellular biology, 28(8), 2579-2589.
Kopecká, M., & Gabriel, M. (1992). The influence of Congo red on the cell wall and (1→ 3)-β-d-glucan microfibril biogenesis in Saccharomyces cerevisiae. Archives of Microbiology, 158(2), 115-126.
López-Mirabal, H. R., & Winther, J. R. (2008). Redox characteristics of the eukaryotic cytosol. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1783(4), 629-640.
Lawrence, C. L., Botting, C. H., Antrobus, R., & Coote, P. J. (2004). Evidence of a new role for the high-osmolarity glycerol mitogen-activated protein kinase pathway in yeast: regulating adaptation to citric acid stress. Mol Cell Biol, 24(8), 3307-3323.
Levin, D. E. (2005). Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiology and molecular biology reviews, 69(2), 262.
Levin, D. E. (2011). Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway. Genetics, 189(4), 1145-1175.
Mackie, A., & Wheatley, R. (1999). Effects and incidence of volatile organic compound interactions between soil bacterial and fungal isolates. Soil Biology and Biochemistry, 31(3), 375-385.
Madeo, F., Herker, E., Wissing, S., Jungwirth, H., Eisenberg, T., & Fröhlich, K.-U. (2004). Apoptosis in yeast. Current opinion in microbiology, 7(6), 655-660.
Madhani, H. D., & Fink, G. R. (1998). The riddle of MAP kinase signaling specificity. Trends in Genetics, 14(4), 151-155.
Marques, J. M., Rodrigues, R. J., de Magalhães-Sant'Ana, A. C., & Gonçalves, T. (2006). Saccharomyces cerevisiae Hog1 protein phosphorylation upon exposure to bacterial endotoxin. Journal of Biological Chemistry, 281(34), 24687-24694.
Martı́n, H., Rodrı́guez-Pachón, J. M., Ruiz, C., Nombela, C., & Molina, M. a. (2000). Regulatory mechanisms for modulation of signaling through the cell integrity Slt2-mediated pathway in Saccharomyces cerevisiae. Journal of Biological Chemistry, 275(2), 1511-1519.
Massawe, V. C., Hanif, A., Farzand, A., Mburu, D. K., Ochola, S. O., Wu, L., . . . Gao, X. (2018). Volatile compounds of endophytic Bacillus spp. have biocontrol activity against Sclerotinia sclerotiorum. Phytopathology, 108(12), 1373-1385.
Mattison, C. P., Spencer, S. S., Kresge, K. A., Lee, J., & Ota, I. M. (1999). Differential regulation of the cell wall integrity mitogen-activated protein kinase pathway in budding yeast by the protein tyrosine phosphatases Ptp2 and Ptp3. Mol Cell Biol, 19(11), 7651-7660.
Mayer, F. L., Wilson, D., & Hube, B. (2013). Candida albicans pathogenicity mechanisms. Virulence, 4(2), 119-128.
Meyer, M., & Vilardell, J. (2009). The quest for a message: budding yeast, a model organism to study the control of pre-mRNA splicing. Brief Funct Genomic Proteomic, 8(1), 60-67. doi:10.1093/bfgp/elp002
Miller‐Fleming, L., Giorgini, F., & Outeiro, T. F. (2008). Yeast as a model for studying human neurodegenerative disorders. Biotechnology Journal: Healthcare Nutrition Technology, 3(3), 325-338.
Moukadiri, I., & Zueco, J. (2001). Evidence for the attachment of Hsp150/Pir2 to the cell wall of Saccharomyces cerevisiae through disulfide bridges. FEMS Yeast Res, 1(3), 241-245.
Mrša, V., & Tanner, W. (1999). Role of NaOH‐extractable cell wall proteins Ccw5p, Ccw6p, Ccw7p and Ccw8p (members of the Pir protein family) in stability of the Saccharomyces cerevisiae cell wall. Yeast, 15(10A), 813-820.
Murakami, C., & Kaeberlein, M. (2009). Quantifying yeast chronological life span by outgrowth of aged cells. Journal of visualized experiments: JoVE(27).
NAHAS, N., MOLSKI, T. F., FERNANDEZ, G. A., & SHA'AFI, R. I. (1996). Tyrosine phosphorylation and activation of a new mitogen-activated protein (MAP)-kinase cascade in human neutrophils stimulated with various agonists. Biochemical Journal, 318(1), 247-253.
Nasheuer, H.-P., Smith, R., Bauerschmidt, C., Grosse, F., & Weisshart, K. (2002). Initiation of eukaryotic DNA replication: regulation and mechanisms.
O'Rourke, S. M., & Herskowitz, I. (2004). Unique and redundant roles for HOG MAPK pathway components as revealed by whole-genome expression analysis. Molecular biology of the cell, 15(2), 532-542.
Orlean, P. (2012). Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics, 192(3), 775-818.
Owsianowski, E., Walter, D., & Fahrenkrog, B. (2008). Negative regulation of apoptosis in yeast. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1783(7), 1303-1310.
Pal, K. K., & Gardener, B. M. (2006). Biological control of plant pathogens. The plant health instructor, 2, 1117-1142.
Piechulla, B., Lemfack, M. C., & Kai, M. (2017). Effects of discrete bioactive microbial volatiles on plants and fungi. Plant Cell Environ, 40(10), 2042-2067.
Proft, M., Pascual‐Ahuir, A., de Nadal, E., Ariño, J., Serrano, R., & Posas, F. (2001). Regulation of the Sko1 transcriptional repressor by the Hog1 MAP kinase in response to osmotic stress. The EMBO journal, 20(5), 1123-1133.
Proft, M., & Serrano, R. (1999). Repressors and upstream repressing sequences of the stress-regulated ENA1 gene in Saccharomyces cerevisiae: bZIP protein Sko1p confers HOG-dependent osmotic regulation. Mol Cell Biol, 19(1), 537-546.
Qi, M., & Elion, E. A. (2005). MAP kinase pathways. Journal of cell science, 118(16), 3569-3572.
Rajer, F. U., Wu, H., Xie, Y., Xie, S., Raza, W., Tahir, H. A. S., & Gao, X. (2017). Volatile organic compounds produced by a soil-isolate, Bacillus subtilis FA26 induce adverse ultra-structural changes to the cells of Clavibacter michiganensis ssp. sepedonicus, the causal agent of bacterial ring rot of potato. Microbiology, 163(4), 523-530.
Raman, M., Chen, W., & Cobb, M. (2007). Differential regulation and properties of MAPKs. Oncogene, 26(22), 3100-3112.
Reiser, V. r., Ruis, H., & Ammerer, G. (1999). Kinase activity-dependent nuclear export opposes stress-induced nuclear accumulation and retention of Hog1 mitogen-activated protein kinase in the budding yeast Saccharomyces cerevisiae. Molecular biology of the cell, 10(4), 1147-1161.
Rep, M., Reiser, V., Gartner, U., Thevelein, J. M., Hohmann, S., Ammerer, G., & Ruis, H. (1999). Osmotic stress-induced gene expression in Saccharomyces cerevisiae requires Msn1p and the novel nuclear factor Hot1p. Mol Cell Biol, 19(8), 5474-5485.
Riedlmeier, M., Ghirardo, A., Wenig, M., Knappe, C., Koch, K., Georgii, E., . . . Vlot, A. C. (2017). Monoterpenes support systemic acquired resistance within and between plants. The plant cell, 29(6), 1440-1459.
Romoli, R., Papaleo, M., De Pascale, D., Tutino, M., Michaud, L., LoGiudice, A., . . . Bartolucci, G. (2014). GC–MS volatolomic approach to study the antimicrobial activity of the antarctic bacterium Pseudoalteromonas sp. TB41. Metabolomics, 10(1), 42-51.
Roncero, C., & Duran, A. (1985). Effect of Calcofluor white and Congo red on fungal cell wall morphogenesis: in vivo activation of chitin polymerization. Journal of bacteriology, 163(3), 1180-1185.
Roquigny, R., Novinscak, A., Arseneault, T., Joly, D. L., & Filion, M. (2018). Transcriptome alteration in Phytophthora infestans in response to phenazine-1-carboxylic acid production by Pseudomonas fluorescens strain LBUM223. BMC Genomics, 19(1), 1-15.
Rousseau, A., & Bertolotti, A. (2016). An evolutionarily conserved pathway controls proteasome homeostasis. Nature, 536(7615), 184-189.
Russo, P., Simonen, M., Uimari, A., Teesalu, T., & Makarow, M. (1993). Dual regulation by heat and nutrient stress of the yeast HSP150 gene encoding a secretory glycoprotein. Molecular and General Genetics MGG, 239(1), 273-280.
Saeki, Y., Toh-e, A., Kudo, T., Kawamura, H., & Tanaka, K. (2009). Multiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particle. Cell, 137(5), 900-913.
Schmidt, R., de Jager, V., Zühlke, D., Wolff, C., Bernhardt, J., Cankar, K., . . . De Boer, W. (2017). Fungal volatile compounds induce production of the secondary metabolite Sodorifen in Serratia plymuthica PRI-2C. Scientific Reports, 7(1), 1-14.
Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature protocols, 3(6), 1101-1108.
Schulz, S., & Dickschat, J. S. (2007). Bacterial volatiles: the smell of small organisms. Natural product reports, 24(4), 814-842.
Seward, R., Willetts, J. C., Dinsdale, M. G., & Lloyd, D. (1996). The effects of ethanol, hexan‐1‐ol, and 2‐phenylethanol on cider yeast growth, viability, and energy status; synergistic inhibition. Journal of the Institute of Brewing, 102(6), 439-443.
Sikkema, J., de Bont, J. A., & Poolman, B. (1994). Interactions of cyclic hydrocarbons with biological membranes. Journal of Biological Chemistry, 269(11), 8022-8028.
Sikkema, J., de Bont, J. A., & Poolman, B. (1995). Mechanisms of membrane toxicity of hydrocarbons. Microbiological reviews, 59(2), 201-222.
Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen, M. B., . . . Futcher, B. (1998). Comprehensive identification of cell cycle–regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Molecular biology of the cell, 9(12), 3273-3297.
Syed-Ab-Rahman, S. F., Carvalhais, L. C., Chua, E. T., Chung, F. Y., Moyle, P. M., Eltanahy, E. G., & Schenk, P. M. (2019). Soil bacterial diffusible and volatile organic compounds inhibit Phytophthora capsici and promote plant growth. Science of the total environment, 692, 267-280.
Tagele, S. B., Lee, H. G., Kim, S. W., & Lee, Y. S. (2019). Phenazine and 1-Undecene Producing Pseudomonas chlororaphis subsp. aurantiaca Strain KNU17Pc1 for Growth Promotion and Disease Suppression in Korean Maize Cultivars. J Microbiol Biotechnol, 29(1), 66-78.
Tanoue, T., & Nishida, E. (2003). Molecular recognitions in the MAP kinase cascades. Cellular signalling, 15(5), 455-462.
Thode, A. B., Kruse, S. W., Nix, J. C., & Jones, D. N. (2008). The role of multiple hydrogen-bonding groups in specific alcohol binding sites in proteins: insights from structural studies of LUSH. Journal of molecular biology, 376(5), 1360-1376.
Tholl, D., & Lee, S. (2011). Terpene specialized metabolism in Arabidopsis thaliana. The Arabidopsis Book/American Society of Plant Biologists, 9.
Thomas, G., Withall, D., & Birkett, M. (2020). Harnessing microbial volatiles to replace pesticides and fertilizers. Microb Biotechnol, 13(5), 1366-1376.
Toh‐E, A., Oguchi, T., Matsui, Y., Yasunaga, S., Nisogi, H., & Tanaka, K. (1993). Three yeast genes, PIR1, PIR2 and PIR3, containing internal tandem repeats, are related to each other, and PIR1 and PIR2 are required for tolerance to heat shock. Yeast, 9(5), 481-494.
Udom, N., Chansongkrow, P., Charoensawan, V., & Auesukaree, C. (2019). Coordination of the cell wall integrity and high-osmolarity glycerol pathways in response to ethanol stress in Saccharomyces cerevisiae. Applied and environmental microbiology, 85(15), e00551-00519.
Veldman, M. B., & Lin, S. (2008). Zebrafish as a developmental model organism for pediatric research. Pediatr Res, 64(5), 470-476. doi:10.1203/PDR.0b013e318186e609
Velivelli, S. L., Kromann, P., Lojan, P., Rojas, M., Franco, J., Suarez, J. P., & Prestwich, B. D. (2015). Identification of mVOCs from Andean rhizobacteria and field evaluation of bacterial and mycorrhizal inoculants on growth of potato in its center of origin. Microbial ecology, 69(3), 652-667.
Wan, M., Li, G., Zhang, J., Jiang, D., & Huang, H.-C. (2008). Effect of volatile substances of Streptomyces platensis F-1 on control of plant fungal diseases. Biological Control, 46(3), 552-559.
Wang, Y., Branicky, R., Noë, A., & Hekimi, S. (2018). Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. Journal of Cell Biology, 217(6), 1915-1928.
Wang, Y., & Dohlman, H. G. (2004). Pheromone signaling mechanisms in yeast: a prototypical sex machine. Science, 306(5701), 1508-1509.
Waskiewicz, A. J., & Cooper, J. A. (1995). Mitogen and stress response pathways: MAP kinase cascades and phosphatase regulation in mammals and yeast. Current opinion in cell biology, 7(6), 798-805.
Watanabe, Y., Takaesu, G., Hagiwara, M., Irie, K., & Matsumoto, K. (1997). Characterization of a serum response factor-like protein in Saccharomyces cerevisiae, Rlm1, which has transcriptional activity regulated by the Mpk1 (Slt2) mitogen-activated protein kinase pathway. Mol Cell Biol, 17(5), 2615-2623.
Westfall, P. J., Ballon, D. R., & Thorner, J. (2004). When the stress of your environment makes you go HOG wild. Science, 306(5701), 1511-1512.
Winkler, A., Arkind, C., Mattison, C. P., Burkholder, A., Knoche, K., & Ota, I. (2002). Heat stress activates the yeast high-osmolarity glycerol mitogen-activated protein kinase pathway, and protein tyrosine phosphatases are essential under heat stress. Eukaryot Cell, 1(2), 163-173.
Wu, P.-H., Ho, Y.-L., Ho, T.-S., Chang, C.-H., Ye, J.-C., Wang, C.-H., . . . Liu, C.-C. (2019). Microbial volatile compounds-induced cytotoxicity in the yeast Saccharomyces cerevisiae: The role of MAPK signaling and proteasome regulatory pathway. Chemosphere, 233, 786-795.
Xie, S., Zang, H., Wu, H., Uddin Rajer, F., & Gao, X. (2018). Antibacterial effects of volatiles produced by Bacillus strain D13 against Xanthomonas oryzae pv. oryzae. Molecular plant pathology, 19(1), 49-58.
Zeidan, R., Ul-Hassan, Z., Al-Thani, R., Migheli, Q., & Jaoua, S. (2019). In-Vitro Application of a Qatari Burkholderia cepacia strain (QBC03) in the Biocontrol of Mycotoxigenic Fungi and in the Reduction of Ochratoxin A biosynthesis by Aspergillus carbonarius. Toxins, 11(12), 700.
Zhang, Y., Li, T., Liu, Y., Li, X., Zhang, C., Feng, Z., . . . Xing, K. (2019). Volatile organic compounds produced by Pseudomonas chlororaphis subsp. aureofaciens SPS-41 as biological fumigants to control Ceratocystis fimbriata in postharvest sweet potatoes. Journal of agricultural and food chemistry, 67(13), 3702-3710.
校內:2026-10-21公開