簡易檢索 / 詳目顯示

研究生: 游復麟
You, Fu-Lin
論文名稱: Helmholtz共振腔聲音特性之研究
Acoustic Characteristics of Helmholtz Resonators
指導教授: 周榮華
Chou, Jung-Hua
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 85
中文關鍵詞: 田口實驗設計法CFD噴流驅動圓柱狀Helmholtz共振腔延伸頸長結構
外文關鍵詞: Taguchi experimental methods, CFD, jet-excited, cylindrical Helmholtz resonator, extended neck structure
相關次數: 點閱:195下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用田口實驗設計法配合計算流體力學,探討噴流驅動的圓柱Helmholtz共振腔,改變噴流吹口的幾何條件,並在Helmholtz共振腔內加入不同的延伸頸長結構,觀察聲音特性的變化。選擇吹口的速度、彎曲角度、高度、寬度,延伸頸長結構的長度與傾斜角度,作為田口實驗設計法的變因。利用CFD數值模擬共振腔內部流場,釐清各種不同Helmholtz共振下流場結構對聲音特性的影響。
    研究結果顯示,各控制因子對聲音強度的影響力依序為:吹嘴高度>下游延伸頸長傾斜角度>吹嘴速度>吹嘴彎曲角度>上游延伸頸長傾斜角度>上游延伸頸長長度,吹嘴寬度與下游延伸頸長長度則可忽略。各控制因子對共振頻率的影響力依序為:吹嘴高度>吹嘴速度>上游延伸頸長長度>吹嘴寬度>上游延伸頸長傾斜角度>下游延伸頸長長度,吹嘴彎曲角度與下游延伸頸長傾斜角度則可忽略。數值模擬顯示,造成Helmholtz共振腔有“強共振”與“弱共振”兩種聲音特性差別的原因,可能是因Helmholtz共振腔內部流場渦漩結構的不同。

    In this thesis, both Taguchi experimental methods and Computational Fluid Dynamic(CFD) software, Fluent, are used to analyze the acoustic effects of jet-excited cylindrical Helmholtz resonators. The shape of the mouthpieces and various extended neck structures of the Helmholtz resonators are examined to observe the acoustic characteristics of Helmholtz resonators. Velocity, bending angle, width, height of mouthpiece and the length, tilt angle of extended neck are chosen as the factors of Taguchi experimental methods. Fluent software is adopted to simulate the flow field inside the Helmholtz resonator for clarify the influence of fluid structure on the acoustic effects of the Helmholtz resonator.
    According to the analysis, the influence sequence of controlled parameters in order of importance on sound amplitude is height of mouthpiece >downwind length of extended neck placed >velocity of mouthpiece >bending angle of mouthpiece > upwind tilt angle of extended neck placed > upwind tilt angle of extended neck placed .The effects of width of mouthpiece and length of extended neck placed at downwind can be ignored. Influence sequence of importance of controlled parameters on resonant frequency is as follows: height of mouthpiece >velocity of mouthpiece >upwind length of extended neck placed >width of mouthpiece >upwind tilt angle of extended neck placed >downwind length of extended neck placed. The effects of bending angle of mouthpiece and tilt angle of extended neck placed at downwind can be ignored. Simulation results suggest that, “strong resonance” or “weak resonance” of Helmholtz resonance might determine the type of vortex structure inside the Helmholtz resonator.

    摘要 I Abstract II 誌謝 IV 目錄 V 表目錄 VIII 圖目錄 IX 符號說明 XI 第一章 緒論 1 1-1 前言與研究動機 1 1-2 文獻回顧 2 第二章 基礎理論 11 2-1 聲學基礎理論 11 2-2 Helmholtz共振腔簡介與應用 11 2-3 Helmholtz共振腔基本理論 12 2-4 計算流體力學基礎理論 14 2-4-1 計算流體力學簡介 14 2-4-2 紊流數值模型 15 2-4-3 計算氣動聲學 19 第三章 實驗方法 22 3-1 驅動條件 22 3-2 田口實驗設計法 22 3-2-1 田口實驗設計法簡介[32] 22 3-2-2 因子種類 23 3-2-3 直交表 25 3-2-4 訊號與雜訊比 26 3-2-5 因子反應分析 28 3-2-6 變異分析 29 3-3 實驗模組 31 第四章 實驗設備 32 4-1 實驗流程 32 4-2 實驗設備 32 4-2-1 鼓風機與吹嘴 32 4-2-2 Helmholtz共振腔 34 4-2-3 麥克風 35 4-2-4 風速計 36 4-2-5 電源供應器 37 第五章 數值方法 38 5-1 基本假設 38 5-2 紊流模型 39 5-3 計算區域和邊界條件 39 5-4 網格生成 40 5-5 求解方法與網格獨立性分析 41 5-5-1 求解方法 41 5-5-2 網格獨立性分析 42 第六章 結果與討論 43 6-1 田口實驗設計結果 43 6-1-1 聲音強度 43 6-1-2 共振頻率 48 6-1-3 小結 53 6-2 數值模擬結果 54 6-2-1 田口實驗第十一組模擬結果 55 6-2-2 聲音強度優化模擬結果 57 6-2-3共振頻率優化模擬結果 59 6-2-4小結 61 第七章 結論與建議 63 7-1結論 63 7-1-1田口實驗設計結論 63 7-1-2數值模擬結論 64 7-2建議 64 參考文獻 65 附錄一 田口實驗設計各組頻譜圖 70 附錄二 文獻回顧整理 73

    [1] N. H. Fletcher, "Air flow and sound generation in musical wind instruments," Annual Review of Fluid Mechanics, vol. 11, p. 123, 1975.
    [2] B. Fabre, J. Gilbert, A. Hirschberg, and X. Pelorson, "Aeroacoustics of musical instruments," Annual Review of Fluid Mechanics, vol. 44, pp. 1-25, 2012.
    [3] R. L. Paton and J.M. Miller, "Excitation of a Helmholtz resonator by a turbulent boundary layer," Journal of the Acoustical Society of America, vol. 58, pp. 800-806, 1975.
    [4] D. Rockwell and E. Naudascher, "Review—self-sustaining oscillations of flow past cavities," Journal of Fluids Engineering, vol. 100, pp. 152-165, 1978.
    [5] T. Morel, "Experimental study of a jet-driven Helmholtz oscillator," American Society of Mechanical Engineers, Winter Annual Meeting, San Francisco, Calif., pp.383-390, 1978.
    [6] P. A. Nelson, N.A. Halliwell, and P.E. Doak, "Fluid dynamics of a flow excited resonance. Part I: Experiment," Journal of Sound and Vibration, vol. 78, pp. 15-38, 1981.
    [7] P. A. Nelson, N.A. Halliwell, and P.E. Doak, "Fluid dynamics of a flow excited resonance. Part II: Flow acoustic interaction," Journal of Sound and Vibration, vol. 91, pp. 375-402, 1983.
    [8] T. D. Mast and A. D. Pierce, "Describing‐function theory for flow excitation of resonators," Journal of the Acoustical Society of America, vol. 97, pp. 163-172, 1995.
    [9] R. Khosropour and P. Millet, "Excitation of a Helmholtz resonator by an air jet," Journal of the Acoustical Society of America, vol. 88, pp. 1211-1221, 1990.
    [10] M. Meissner, "The Response of a Helmholtz resonator to external excitation. Part II: Flow-induced resonance," Archives of Acoustics, vol. 30, pp. 57-71, 2005.
    [11] R. Ma, P. E. Slaboch, and S. C. Morris, "Fluid mechanics of the flow-excited Helmholtz resonator," Journal of Fluid Mechanics, vol. 623, pp. 1-26, 2009.
    [12] M. Massenzio, A. Blaise, and C. Lesueur, "Mechanisms of self-sustained oscillations induced by a flow over a cavity," Journal of Vibration and Acoustics, vol. 130, pp051001-1-17, 2008.
    [13] S. Dequand, J. F. H. Willems, M. Leroux, R. Vullings, M. van Weert, C. Thieulot, "Simplified models of flue instruments: Influence of mouth geometry on the sound source," The Journal of the Acoustical Society of America, vol. 113, pp. 1724-1735, 2003.
    [14] H. J. Ausserlechner, T. Trommer, J. Angster, and A. Miklos, "Experimental jet velocity and edge tone investigations on a foot model of an organ pipe," Journal of the Acoustical Society of America, vol. 126, pp. 878-886, 2009.
    [15] S. Yoshikawa, H. Tashiro, and Y. Sakamoto, "Experimental examination of vortex-sound generation in an organ pipe: A proposal of jet vortex-layer formation model," Journal of Sound and Vibration, vol. 331, pp. 2558-2577, 2012.
    [16] A. Selamet and I. Lee, "Helmholtz resonator with extended neck," The Journal of the Acoustical Society of America, vol. 113, pp. 1975-1985, 2003.
    [17] S. K. Tang, "On Helmholtz resonators with tapered necks," Journal of Sound and Vibration, vol. 279, pp. 1085-1096, 2005.
    [18] S. Caro, P. Ploumhans, X. Gallez, F. Brotz, M. Schrumpf, A. Read, "Aeroacoustic simulation of the noise radiated by an Helmholtz resonator placed in a duct," 11th AIAA/CEAS Aeroacoustic Conference, Monterey CA, USA, pp.2005-3067, 2005.
    [19] S. Arunajatesan and N. Sinha, "Modeling approach for reducing Helmholtz resonance in submarine structures," 11th AIAA/CEAS Aeroacoustic Conference, Monterey CA, USA, pp.2005-2858, 2005.
    [20] T. Kobayashi, T. Takami, M. Miyamoto, K. Y. Takahashi, A. Nishida, and M. Aoyagi, "3D calculation with compressible LES for sound vibration of ocarina," Open Source CFD International Conference, 2009.
    [21] E. Selamet, A. Selamet, A. Iqbal, and H. Kim, "Effect of flow on Helmholtz resonator acoustics: A three-dimensional computational study vs. experiments," SAE Technical Paper, vol. 2011-01-1521, 2011.
    [22] S. Dequand, X. Luo, J. Willems, and A. Hirschberg, "Helmholtz-like resonator self-sustained oscillations, part 1: Acoustical measurements and analytical models," AIAA Journal, vol. 41, pp. 408-415, 2003.
    [23] S. Dequand, S. Hulshoff, H. van Kuijk, J. Willems, and A. Hirschberg, "Helmholtz-like resonator self-sustained oscillations, part 2: Detailed flow measurements and numerical simulations," AIAA Journal, vol. 41, pp. 416-423, 2003.
    [24] S. Mallick, R. Shock, and V. Yakhot, "Numerical simulation of the excitation of a Helmholtz resonator by a grazing flow," The Journal of the Acoustical Society of America, vol. 114, pp. 1833-1840, 2003.
    [25] G. Paál and I. Vaik, "Unsteady phenomena in the edge tone," International Journal of Heat and Fluid Flow, vol. 28, pp. 575-586, 2007.
    [26] A. Powell, "On the edgetone," Journal of the Acoustical Society of America, vol. 33, pp. 395-409, 1961.
    [27] K.Y. Takahashi, T. Iwasaki, T. Akamura, Y. Nagao, K. I. Nakano, T. Kobayashi, "Effective techniques and crucial problems of numerical study on flue instruments," Proceedings of Meeting on Acoustics, Montreal, Canada, vol. 19, 2013.
    [28] R. L. Panton and J. M. Miller, "Resonant frequencies of cylindrical Helmholtz resonators," Journal of the Acoustical Society of America, vol. 57, pp. 1533-1535, 1975.
    [29] R. C. Chanaud, "Effects of geometry on the resonance frequency of Helmholtz resonators," Journal of Sound and Vibration, vol. 178, pp. 337-348, 1994.
    [30] U. Ingard, "On the theory and design of acoustic resonator," Journal of the Acoustical Society of America, vol. 25, pp. 1037-1061, 1953.
    [31] 劉育政, “以三維大尺度渦流法模擬平板混合紊流場,”國立成功大學航空太空工程學系碩士學位論文,2009年。
    [32] 李輝煌,“田口方法:品質設計的原理與實務,” 高立圖書有限公司出版,2011年。
    [33] "Fluent 6.3 user's guide," Fluent Inc., Lebanon, 2006.

    下載圖示 校內:立即公開
    校外:2014-08-30公開
    QR CODE