簡易檢索 / 詳目顯示

研究生: 吳舒昌
Wu, Shu-chang
論文名稱: 以第一原理輔助CALPHAD熱力學計算建構Mo-Nb-Re三元系統之熱力學模型
Ab initio-aided CALPHAD thermodynamic modeling of the Mo-Nb-Re ternary system
指導教授: 林士剛
Lin, Shih-kang
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 125
中文關鍵詞: 超合金相圖CALPHAD熱力學模型合金設計第一原理計算特殊準隨機結構
外文關鍵詞: superalloys, CALPHAD, phase diagram, ab-initio calculation, special quasirandom structure
相關次數: 點閱:150下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來隨著原油價格持續上漲,導致航空業者運輸成本不斷增加。而為了降低油耗成本,可以從兩種面向發展,第一種為降低機體重量,如:使用輕量化材料、減去多餘的座椅,提供站票;另外一種則是提升引擎工作效率,而本研究主要投入在提升引擎效率方面。根據卡諾循環得知,提高引擎工作溫度可以提升效率,而目前航太業者主要使用的引擎材料為可耐高溫的超合金,其中主要的成分為Ni或是Co。除了基底元素之外,超合金內還會添加許多難冶金屬,如:Re、Mo、Nb、W等等。在開發次世代超合金材料時,以往人們皆是使用直接配料、加工、分析,透過大量的試錯經驗來抓取合適的成分範圍。但此種方式會消耗大量的貴重金屬,成本太高,過於浪費材料與時間。而本研究打算以CALPHAD熱力學方法直接從相圖觀點、吉布斯自由能根本處進行研究。有了完善的相圖與熱力學模型可以有效地預測不同成分及溫度下之各種相變態,藉機開發所需要的微結構與合金成分以降低成本與提升研發速度。目前已有許多與Ni、Co相關的熱力學模型被報導出來,但除了與基底成分有關的熱力學模型外,也要有各添加元素間的熱學模型參數才能夠有效地描述各成分元素間的交互作用。
    而本研究主要探討常見的參雜元素Mo-Nb-Re三元系統中各熱力學交互作用參數,其中Mo-Nb、Nb-Re、Mo-Re分別有Xiong等人、Liu等人與Yang等人提出各自的熱力學模型,但Liu等人與Yang等人對σ相的模型描述皆不相同。Liu等人將σ相設計為(Re)10(Nb)4(Nb,Re)16,而Yang等人則將σ相設計為(Re)10(Mo,Re)4(Mo,Re)16。由於模型的差異導致無法直接合併,因此本研究使用較為廣泛的σ相模型(Re)10(Nb,Re)4(Nb,Re)16,重新優化Nb-Re二元系統。此外本研究亦會使用第一原理方法(ab-initio calculation)計算介金屬化合物之終點化合物(end-member)在0 K之生成能,與使用特殊準隨機結構(special quasirandom structure)計算bcc與hcp固溶相之非溫度項交互作用參數。
    使用第一原理輔助熱力學計算(ab-initio aided CALPHAD)來建構Mo-Nb-Re熱力學模型將會使得此模型更具備物理意義,而降低過多的數學描述。本研究已成功重新優化Mo-Nb、Nb-Re、Mo-Re二元子系統,並優化出Mo-Nb-Re三元系統熱力模型參數。本研究所建構的Mo-Nb-Re三元熱力學模型,相信在未來對次世代超合金的合金設計會具有相當大的幫助。

    Conventionally, Ni-based superalloys have been employed as the high-temperature materials for engines that directly determine their efficiency. Rare-earth elements, such as Mo, Nb, Re, etc, are usually alloyed in next-generation superalloys to increase their melting temperatures as well as to enhance their high-temperature mechanical properties.
    In this works, we employed ab initio-aided CALPHAD modeling for developing the thermodynamic description for the Mo-Nb-Re ternary system. With the computation-assisted materials design, only a few experimental verifications are needed, so progress for new materials developments can be significantly accelerated and the cost can also be reduced. In the Mo-Nb-Re ternary system, there are three solution phases, the liquid, body-centered-cubic (BCC), and hexagonal-close-pack (HCP) phases, and two compounds with noticeable homogeneity ranges, the σ and χ phases. The thermodynamic models of constituent systems, namely the Mo-Nb, Mo-Re, and Nb-Re binary systems, have recently been proposed by Xiong et al., Yang et al., and Liu et al., respectively. However, the compound energy formalism models for the σ phase are different, i.e. (Re)10(Mo,Re)4(Mo,Re)16 in the Mo-Re binary
    system and (Re)10(Nb)4(Nb,Re)16 in the Nb-Re binary system, and cannot be integrated in the Mo-Nb-Re ternary system. Therefore, we firstly re-optimized the Nb-Re system with a more general sublattice model, (Re)10(Mo,Nb,Re)4(Mo,Nb,Re)16, for the σ phase. In addition, we used special quasi-random (SQS) models to reassess the BCC and HCP phases. Finally, we constructed the tentative thermodynamic parameters of the Mo-Nb-Re ternary system.

    摘要.....i Abstract....iii 致謝......xi 目錄......xii 圖目錄....xiv 表目錄......xviii 第一章 前言 1 第二章 文獻回顧 3 2.1 超合金現況 3 2.2 Nb-Re二元子系統 9 2.2.1 實驗相圖 9 2.2.2 計算相圖 13 2.3 Mo-Re二元子系統 16 2.3.1 實驗相圖 16 2.3.2 計算相圖 19 2.4 Mo-Nb二元子系統 28 2.4.1 實驗相圖 28 2.4.2 計算相圖 31 2.5 Mo-Nb-Re三元系統 33 第三章 研究方法 36 3.1 第一原理計算 36 3.2 特殊準隨機結構 39 3.3 熱力學計算相圖 40 3.4 第一原理輔助熱力學計算 42 3.5 計算方法 42 3.5.1 不規則相固溶相之熱力學模型 42 3.5.2 規則介金屬相之熱力學模型 44 第四章 結果與討論 50 4.1 Nb-Re二元子系統 50 4.1.1 第一原理計算 50 4.1.2熱力學計算 61 4.2 Mo-Re二元子系統 68 4.2.1 第一原理計算 68 4.2.2 熱力學計算 72 4.3 Mo-Nb二元子系統 81 4.3.1 第一原理計算 81 4.3.2 熱力學計算 84 4.4 Mo-Nb-Re三元系統 90 4.4.1 第一原理計算 90 4.4.2 熱力學計算 96 第五章 結論 97 第六章 未來工作 98 參考文獻 99 附錄一、優化各系統之POP檔 105 優化Nb-Re系統之POP檔 105 優化Mo-Re系統之POP檔 110 優化Mo-Nb系統之POP檔 115 優化Mo-Nb-Re系統之POP檔 118 附錄二、Mo-Nb-Re三元系統之TDB檔 119

    1. Gaskell, D.R., Introduction to the Thermodynamics of Materials. Vol. 2: CRC Press (2008).
    2. El-Genk, M.S. and J.-M. Tournier, “A review of refractory metal alloys and mechanically alloyed-oxide dispersion strengthened steels for space nuclear power systems,”Journal of Nuclear Materials, 340(1) pp. 93-112 (2005).
    3. Lukas, H.L., S.G. Fries and B. Sundman, Computational thermodynamics: the CALPHAD method. Vol. 131: Cambridge University Press Cambridge (2007).
    4. Xiong, W., Y. Du, Y. Liu, B.Y. Huang, H.H. Xu, H.L. Chen and Z. Pan, “Thermodynamic assessment of the Mo–Nb–Ta system,”Calphad, 28(2) pp. 133-140 (2004).
    5. Yang.,Y., C. Zang, S. Chen, D. Morgan and Y. Austin Chang, “First-principles calculation aided thermodynamic modeling of the Mo–Re system,”Intermetallics, 18(4) pp. 574-581 (2010).
    6. Sholl, D. and J.A. Steckel, Density functional theory: a practical introduction: John Wiley & Sons (2011).
    7. Zunger, A., S.-H. Wei, L.G. Ferreira and J.E. Bernard, “Special quasirandom structures,”Physical Review Letters, 65(3) pp. 353 (1990).
    8. Reed, R.C., The superalloys: fundamentals and applications: Cambridge University Press (2006).
    9. Richards, J.C. and Theodore S. Rodgers, Approaches and methods in language teaching: Cambridge University Press (2001).
    10. Cumpsty, N., Jet Propulsion: A simple guide to the aerodynamic and thermodynamic design and performance of jet engines. Vol. 2: Cambridge University Press (2003).
    11. Rolls-Royce plc (United Kingdom), The Jet Engine (1986).
    12. 张小明 and 田锋, “日本超高温结构用金属材料的研究现状,”稀有金属快报, 26(7) pp. 12-15 (2007).
    13. Sato, A., A.C. Yeh, T. Kobayashi, T. Murakumo, J.X. Zhang, T. Yokokawa and H. Harada in The 8th Liège Conference Advanced Materials for Power Engineering 2006. Palais des Congrès in Liège, Belgium (2006).
    14. 張小明, “日本Nb基超合金和復合材料研究新進展,”稀有金屬快報, 24(2) pp. 3-7 (2005).
    15. Durand-Charre, M., The microstructure of superalloys: CRC press (1998).
    16. Knapton, A.G., “The niobium-rhenium system,”Journal of the Less Common Metals, 1(6) pp. 480-486 (1959).
    17. Giessen, B.C., R. Nordheim and N.J. Grant, “The constitution diagram niobium(columbium)-rhenium,”Transactions of the Metallurgical Society of AIME, 221 (1961).
    18. Savitskii, E.M., M.A. Tylkina and K.B. Povarova, “Phase diagram for the niobium-rhenium system,”Atomic Energy, 7(5) pp. 937-940 (1961).
    19. Levesque, P., W.R. Bekebrede and H.A. Brown, “The constitution of rhenium-columbium alloys,”Transaction of American Society for Metals, 53 (1961).
    20. Massalski, T.B., H. Okamoto, P.R. Subramanian and L. Kacprzak, Binary alloy phase diagrams: ASM international (1990).
    21. Liu, X. L., Chelsey Z. Hargather and Z.-K. Liu, “First-principles aided thermodynamic modeling of the Nb–Re system,”Calphad, 41 pp. 119-127 (2013).
    22. Dickinson, J.M. and L.S. Richardson, “The Constitution of Rhenium-Molybdenum Alloys,”Transactions, American Society for Metals, 51 pp. 1055 (1959).
    23. Knapton, A.G., “The Molybdenum-Rhenium System,”Journal of the Institute Metals, 87 (1958).
    24. Savitskii, E.M., M.A. Tylkina and K.B. Povarova, “ Phase diagram of the rhenium-molybdenum system,”Zhurnal Neorganicheskoi Khimii 4 pp. 424-34 (1959).
    25. Brewer, L., R.H. Lamoreaux, R. Ferro, R. Marazza and K. Girgis, Molybdenum: physico-chemical properties of its compounds and alloys: International Atomic Energy Agency Vienna (1980).
    26. Okamoto, H., “Mo-Re (Molybdenum-Rhenium),”Journal of Phase Equilibria and Diffusion, 31(6) pp. 580-581 (2010).
    27. Mao, P., K. Han and Y. Xin, “Thermodynamic assessment of the Mo–Re binary system,”Journal of Alloys and Compounds, 464(1) pp. 190-196 (2008).
    28. Farzadfar, S.A., M. Levesque, M. Phejar and J.M. Joubert, “Thermodynamic assessment of the Molybdenum–Rhenium system,”Calphad, 33(3) pp. 502-510 (2009).
    29. Kocherzhinskii, Yu.A. and V.I. Vasilenko, "Melting Diagram of the Molybdenum-Niobium System."Doklady Akademii Nauk SSSR. Vol. 257. No. 2 (1981).
    30. Pryakhina, L.I. , R.S. Ployakova, V.G. Grmova, K.P. Myasnikova and O.V. Ozhimkova, Tsvet. Metal. Splavov, Nauka, Moscow pp. 27-31 (1972).
    31. Rudy, E., Air Force Materials Laboratory, Report No. AFML-TR-65-2,Part VOH: Wright Patterson AFB (1969).
    32. Kornilov, I.J. and R.S. Polyakova, Trudy Inst. Met. Im. A. A. Ba˘ıkova., 2 pp. 149-153 (1957).
    33. Kocherzhinskii, Yu.A., V.I. Vasilenko and O.G. Kulik, Thermochim. Acta, 93 pp. 649-652 (1985).
    34. Kocherzhinskii, Yu.A. and V.I. Vasilenko, Doklady Akademii Nauk SSSR Metally, pp. 188-192 (1985).
    35. Rudy, E. (1967), J. Progulski, Planseeber. Pulvermetall, 15 pp. 13-45.
    36. Singhal, S.C. and W.L. Worrell, “A high-temperature thermodynamic investigation of the nb-mo system,”Metallurgical Transactions, 4(4) pp. 1125-1128 (1973).
    37. Tsagaraeva, E.A., E.M. Sokolovskaya, M.V. Raevskaya, I.G. Sokolova and S.V. Kabanov, “Isothermal cross-section of the molybdenum rhenium niobium system at 1700-degrees-C”, Vestnik Moskovskogo Universiteta Khimiya, 40(4) pp. 424-425 (1985).
    38. Smol'yaninova, E.A., E.K. Stribuk and V.I. Tyavlovskii, “Phase Equilibrium Diagram of Ternary Rhenium System with Vanadium, Niobium and Molybdenum,”Izvestiya Akademii Nauk SSSR. Metally, (3) pp. 207-209 (1987).
    39. Nikolaev, S.V. and R.Kh. Shaipov, Isothermal section of phase equilibrium diagram of threecomponent Mo-Nb-Re system at 1375 K, in Proc. 6th AllRuss. Conf. Young Scientists Aspirants and Students with Int. Particip. "Mendeleev 2012. Inorganic Chemistry": St. Petersburg. p. 275-276 (2012).
    40. Georg, K. and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,”Computational Materials Science, 6(1) pp. 15-50 (1996).
    41. Redlich, O. and A.T. Kister, “Algebraic representation of thermodynamic properties and the classification of solutions.,”Industrial & Engineering Chemistry, 40(2) pp. 345-348 (1948).
    42. Cao, W., S.-L. Chen, F. Zhang, K. Wu, Y. Yang, Y.A. Chang, R. Schmid-Fetzer and W.A. Oates, “PANDAT software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation,”Calphad, 33(2) pp. 328-342 (2009).
    43. Georg, K., M. Marsman and J. Furthmüller, VASP the GUIDE ed. Computational Materials Physics, Faculty of Physics, Universität WienWien, Austria (2014).
    44. Jiang, C., “First-principles study of ternary bcc alloys using special quasi-random structures,”Acta Materialia, 57(16) pp. 4716-4726 (2009).
    45. Jiang, C., C. Wolverton, J. Sofo, L.-Q. Chen and Z.-K. Liu, “First-principles study of binary bcc alloys using special quasirandom structures,”Physical Review B, 69(21) pp. 214202 (2004).
    46. Shin, D., R. Arróyave, Z.-K. Liu and A. Van De Walle, “Thermodynamic properties of binary hcp solution phases from special quasirandom structures,”Physical Review B, 74(2) pp. 024204 (2006).
    47. Shin, D., and C. Wolverton, "First-principles density functional calculations for Mg alloys: A tool to aid in alloy development." Scripta Materialia, 63(7) pp. 680-685 (2010).
    48. Wolverton, C., “Crystal structure and stability of complex precipitate phases in Al–Cu–Mg–(Si) and Al–Zn–Mg alloys,”Acta Materialia, 49(16) pp. 3129-3142 (2001).
    49. Liu, Z.-K., “First-principles calculations and CALPHAD modeling of thermodynamics,”Journal of Phase Equilibria and Diffusion, 30(5) pp. 517-534 (2009).
    50. Dinsdale, A.T., “SGTE data for pure elements,”Calphad, 15(4) pp. 317-425 (1991).
    51. Hillert, M., “The compound energy formalism,”Journal of Alloys and Compounds, 320(2) pp. 161-176 (2001).
    52. Muggianu, Y. M., M. Gambino, and J. P. Bros., "Enthalpies of formation of liquid alloys bismuth-gallium-tin at 723k-choice of an analytical representation of integral and partial thermodynamic functions of mixing for this ternary-system." Journal de Chimie Physique et de Physico-Chimie Biologique, 72(1) pp. 83-88 (1975).
    53. Spooner, F.J. and C.G. Wilson, “Ordering in binary sigma phases,”Acta Crystallographica, 17 pp. 1533-1538 (1964).
    54. Joubert, J.M., “Crystal chemistry and Calphad modeling of the σ phase,”Progress in Materials Science, 53(3) pp. 528-583 (2008).
    55. Pelton, A.D., M. Blander, M.T. Clavaguera-Mora, M. Hoch, L. Höglund, H.L. Lukas, P. Spencer and B. Sundman, “Thermodynamic modeling of solutions and alloys,”Calphad, 21(2) pp. 155-170 (1997).
    56. Joubert, J.M., “Crystal chemistry and Calphad modeling of the σ phase,”Progress in Materials Science, 53(3) pp. 528-583 (2008).
    57. Steadman, R. and P.M. Nuttall, “chi phase in a niobium-rhenium alloy,”Acta Crystallographica, 17(1) pp. 62-63 (1964).
    58. Joubert, J.M. and M. Phejar, “Crystal chemistry and Calphad modelling of the χ phase,”Progress in Materials Science, 54(7) pp. 945-980 (2009).
    59. Ansara, I., T.G. Chart, A.F. Guillermet, F.H. Hayes, U.R. Kattner, D.G. Pettifor, N. Saunders and K. Zeng, “Thermodynamic Modelling of Solutions and Alloys,”Calphad, 21(2) pp. 171-218 (1997).
    60. Conway, J.B., R.A. Hein, R.M. Jr Fincel and A.C. Losekamp, Enthalpy and thermal expansion of several refractory metals to 2500 deg, U.S.A.E.C. GE-TM-64-2-8 (1965).

    下載圖示 校內:2019-07-25公開
    校外:2019-07-25公開
    QR CODE