簡易檢索 / 詳目顯示

研究生: 鍾啟生
Chung, Chi-Sheng
論文名稱: 錫銀銅無鉛錫球溫度循環可靠度之研究
A Study of Temperature Cycling Reliability of SnAgCu Lead-Free Solder Joints
指導教授: 陳鐵城
Chen, Tei-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系碩士在職專班
Department of Mechanical Engineering (on the job class)
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 115
中文關鍵詞: 錫銀銅無鉛錫球溫度循環球閘陣列可靠度試驗
外文關鍵詞: board level reliability, temperature cycling, BGA, SnAgCu
相關次數: 點閱:140下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在環保意識抬頭的今日,如何發展無鉛銲錫以取代原本已使用多年之錫鉛球,以期能發展出特性及效能與錫鉛球相近,卻又對人體及環境無害之銲錫材料.本研究主要是針對溫度循環試驗對電子構裝元件之無鉛錫球銲點之影響,並以理論與實驗進行相互之驗證,而找出最佳之無鉛錫球成份,成為日後設計時,提高電子構裝元件產品可靠度之重要參考指標.
    參考目前一些高科技電子產品於正常運作時,其工作溫度可達100℃以上,往往會因溫差變化大,錫球銲點容易斷裂,而造成電子產品使用壽命減少.因此,本文主要是根據JEDEC之標準溫度循環規範,而進行六種不同無鉛錫球銲點上板後之可靠度實驗,從實驗結果來看,Sn96.5%Ag3.0%Cu0.5%成份不管搭配OSP或是Au/Ni基板,都呈現最佳的熱疲勞壽命.除此之外,也發現銀金屬成份若控制在3% ~ 4%之間,會有較佳的熱疲勞壽命.若使用低銀成份的無鉛錫球,將會大大影響電子產的使用壽命.而數值分析方面,則以模擬軟體ANSYS進行數值模擬,並分析其錫球潛應變能量密度,藉由經驗公式,求出其預估壽命值與實驗相互驗證.

    Due to environmental and health concerns about products that contain lead, a lot of studies on the development of lead –free solder alloys have been carried out. Both experiment and numerical approaches were used in the thesis study. Six different kinds of Sn-Ag-Cu composition were picked up to evaluate the fatigue life of solder joint in the condition of –40℃~125℃ temperature cycling. Besides, two types of metal surface finish (OSP and Ni/Au) on substrate were also used in the study.
    In the on-board experiment side, a CSP (Chip Scale Package) type was taken as a test vehicle and daisy chain pattern was also designed as electrical measurement. After temperature cycling test, the package with Sn96.5%Ag3.0%Cu0.5% solder ball is better reliability performance than others ball composition. The first failure occurred at 1,892 cycles and characteristic life (63.2% failure) is 2,561 cycles. Some phenomenon was observed from the study.
    -Content of Ag is controlled in 3%~4%wt will have better fatigue life
    -Doping Ni element can increase fatigue life
    -Those solder balls near die edge will suffer greater mismatch CTE
    In the numerical analysis side, the solid model was simplified 1/4 analysis model to simulate the creep strain energy density of solder ball. The hexahedron with 24 nodes of solid45 element is used to execute linear elasticity material and non-linear material (plasticity and creep) analysis. According to the simulated result, maximum creep strain energy density was 0.103MPa. The value was put into a published formula for fatigue life prediction. Finally, the number of cycle of fatigue life prediction was 3,505 cycles.

    第一章 緒論...........................................1 1-1 前言..............................................1 1-2 環保無鉛議題之現況與發............................3 1-3 IC封裝簡介........................................6 1-4 銲錫接點可靠度介紹................................8 1-5 文獻回顧.........................................12 1-6 研究方法.........................................16 1-7 組織與章節.......................................17 第二章 基礎理論......................................21 2-1 JEDEC標準溫度循環方法之介紹......................21 2-2 韋伯壽命曲線分佈簡介.............................22 2-3 線性分析理論.....................................25 2-4 非線性分析理論...................................26 2-5 材料性質.........................................29 2-5-1 線性材料性質...................................30 2-5-2 非線性材料性質.................................31 第三章 實驗工作......................................37 3-1 實驗試片之製作...................................37 3-1-1 CSP產品介紹....................................37 3-1-2 基板球墊表面之鍍層.............................39 3-1-3 量測迴路設計...................................40 3-1-4 無鉛錫球之成份.................................41 3-1-5 印刷電路板之規格...............................42 3-1-6 表面黏著技術...................................43 3-1-6-1 表面黏著作業相關設備.........................43 3-1-6-2 表面黏著作業程序.............................46 3-1-7 電阻值失效判定之準則.......................51 3-2 實驗設備之介紹...................................51 3-3 實驗程序.........................................54 3-3-1 溫度循環實驗之程序.............................54 3-3-2 失效模式之判定.................................57 3-3-2-1 橫切面的觀察(Crossing section) ..............57 3-3-2-2 紅染劑滲透試驗...............................58 第四章 實驗結果與討論................................77 4-1 溫度循環試驗之失效循環數.........................77 4-2 錫球失效分析.....................................78 4-3 韋伯壽命分佈.....................................79 4-4 實驗結果討論.....................................82 第五章 數值分析......................................98 5-1 數值模擬基本假設.................................98 5-2 結構分析模型架構.................................99 5-3 ANSYS分析步驟....................................99 5-4 數值分析結果....................................102 第六章 結論與未來展望...............................109 6-1 結論............................................109 6-1 未來展望........................................111 參考文獻............................................112

    1.R. Darveaux, J. Heckman, A. Syed and A. Mawer, “Solder joint fatigue life of fine pitch BGAs - impact of design and material choices”, Microelectronics Reliability, Vol.40, Is.7, pp.1117-1127, 2000.
    2.T. Y. Tee, H. S. Ng, D. Yap, X. Baraton and Z. Zhong, “Board level solder joint reliability modeling and testing of TFBGA packages for telecommunication applications“, Microelectronics Reliability, Vol.43, Is.7, pp.1117-1123, 2003.
    3.W. W. Lee, L. T. Nguyen and G. S. Selvaduray, ”Solder joint fatigue models: review and applicability to chip scale packages”, Microelectronics Reliability, Vol.40, Is.2, pp.231-244, 2000.
    4.L. Nguyen, N. Kelkar, T. Kao, A. Prabhu and H. Takiar, “Wafer level chip scale packaging – solder joint reliability”, III-Vs Review, Vol.17, Is.5, pp.25, 2004.
    5.Z. P. Wang, Y. M. Tan and K. M. Chua, “Board level reliability assessment of chip scale packages“, Microelectronics Reliability, Vol.39, Is.9, pp.1351-1356, 1999.
    6.J. J. Sundelin, S. T. Nurmi, T. K. Lepistö and E. O. Ristolainen, “Mechanical and microstructural properties of SnAgCu solder joints”, Materials Science and Engineering: A, Vol.420, Is.1-2, pp.55-62, 2006.
    7.S. Wiese, F. Feustel and E. Meusel, “Characterisation of constitutive behaviour of SnAg, SnAgCu and SnPb solder in flip chip joints“, Sensors and Actuators A: Physical, Vol.99, Is.1-2, pp.188-193, 2002.
    8.C. W. Hwang and K. Suganuma, “Joint reliability and high temperature stability of Sn–Ag–Bi lead-free solder with Cu and Sn–Pb/Ni/Cu substrates“, Materials Science and Engineering A, Vol.373, Is.1-2, pp.187-194, 2004.
    9.A. Sharif and Y. C. Chan, “Effect of substrate metallization on interfacial reactions and reliability of Sn–Zn–Bi solder joints“, Microelectronic Engineering, Vol.84, Is.2, pp.328-335, 2007.
    10.郭昱綸, “覆晶球柵陣列電子封裝體在溫度循環下的熱應力與熱應變分析”, 國立中山大學機械與機電工程研究所碩士論文, 2003.
    11.A. Schubert, R. Dudek, E. Auerswald, A. Gollhardt, B.Michel, H. Reichl, “Fatigue Life Models for SnAgCu and SnPb Solder Joints Evaluated by Experiments and Simulation”, Electronic Components and Technology Conference, 53rd, 2003.
    12.J. D. Wu, Y. S. Lai, Y. L. Kuo, S. C. Hung and M. -H.R. Jen, “Thermo-mechanical Deformation and Stress Analysis of A Flip-Chip BGA”, International Electronic Packaging Technical Conference and Exhibition, July 2003.
    13.T. H. Wang, Y. S. Lai, “Effect of Underfill Thermomechanical Properties on Thermal Cycling Fatigue Reliability of Flip-Chip Ball Grid Array”, Journal of Electronic Packaging, 2004.
    14.T. H. Wang, C. C. Lee, Y. S. Lai, C. E. Huang, “Correlation Between Power Cycling and Thermal Cycling Fatigue Reliabilities of Chip-scale packages”, In Proceedings of SEMICON West 2004(29th International Electronics Manufacturing Technology), 2004.
    15.T. H. Wang, Y. S. Lai, “Submodeling Analysis for Path-Dependent Thermomechanical Problems”, Journal of Electronic Packaging, 2005.
    16.Y. S. Lai, T. H. Wang, “Verification of submodeling technique in thermomechanical reliability assessme”, Microelectronics and Reliability, Vol.45, Is.3-4, pp.575-582, 2005.
    17.Y. S. Lai, T. H Wang, “Optimal design towards enhancement of board-level thermomechanical reliability of wafer-level chip-scale packages“, Microelectronics and Reliability, Vol.47, Is.1, pp.104-110, 2007.
    18.Y. S. Lai, “On solution schemes for time-independent thermomechanical analysis for structures containing polymeric materials”, Microelectronics and Reliability, Vol.46, Is.5-6, pp.859-863, 2006.
    19.黃東鴻、賴逸少, “裸晶型晶圓級封裝溫度循環疲勞可靠度之最佳化設計”, 中國機械工程學會第二十一屆全國學術研討會, 2004.
    20.黃東鴻、賴逸少、李長祺, “功率循環延時對晶片尺寸封裝受功率與溫度耦合循環測試疲勞可靠度的影響”, 中國機械工程學會第二十二屆全國學術研討會, 2005.
    21.黃東鴻、王靜君、賴逸少, “疊合封裝結構溫度循環疲勞可靠度之最佳化設計”, 中華民國力學學會第二十九屆全國力學會議, 2005.
    22.黃東鴻、李長祺、王靜君、賴逸少, “堆疊晶片尺寸封裝受功率與溫度耦合循環測試的熱傳特性與疲勞可靠度表現”, 中華民國力學學會第三十屆全國力學會議, 2006.
    23.JEDEC Solid State Technology Association, “Temperature Cycling”, JESD22-A104B, July 2000.
    24.IPC Association Connecting Electronics Industries, “Performance Test Methods and Qualification Requirements for Surface Mount Solder Attachments”, IPC-9701, August 2001.
    25.R. R. Tummala, ”Fundamentals of Microsystems Packaging”, McGraw-Hill International Edition, Singapore, 2001.
    26.羅金龍, “ 58Bi-42Sn無鉛銲料與球矩陣封裝Au/Ni/Cu墊層界面反應之研究”, 國立中央大學化學工程與材料工程研究所碩士論文, 2001.
    27.陳建銘, “無鉛錫球封裝晶片之掉落衝擊測試”, 國立中山大學機械與機電工程研究所碩士論文, 2005.
    28.L. Anand,“Constitutive Equation for The Rate-Dependent Deformation of Metals at Elevated Temperature”, Transactions of The ASME, Vol.104, pp.12-17, 1982.
    29.European Union Waste in Electrical and Electronic Equipment (WEEE) Directive, 3rd Draft, May 2000.
    30.Japanese Ministry of Health and Welfare Waste Regulation on Un-Reusable Pb, June 1998.
    31.R. C. Hibbeler,“Mechanics of Materials”, Prentice Hall International, Inc, pp.87-97, 1997.
    32.許宏旭, “印刷電路板之低速衝擊研究”, 國立成功大學航太工程學研究所碩士論文, 2004.
    33.劉益銘, ”電子構裝銦基無鉛銲錫與金厚膜及銀基板之界面反研究”, 國立台灣大學材料科學與工程學研究所博士論文, 2001.
    34.劉立晟, ”覆晶錫球陣列封裝之無鉛錫球接點可靠度測試”, 國立中山大學機械與機電工程研究所碩士論文, 2003.
    35.蘇宗麟, “Sn-3.5Ag/Ag厚膜銲錫球格陣列構裝界面反應研究” , 國立台灣大學材料科學與工程學研究所博士論文, 2002.

    下載圖示 校內:2008-08-14公開
    校外:2008-08-14公開
    QR CODE