簡易檢索 / 詳目顯示

研究生: 鍾博丞
Chung, Po-Cheng
論文名稱: CW與脈衝式976nm摻鐿光纖放大器之模擬分析
Simulation and analysis of 976nm CW and pulsing ytterbium-doped fiber amplifiers
指導教授: 蔡宗祐
Tsai, Tzong-Yow
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 100
中文關鍵詞: 摻鉺光纖放大器摻鐿光纖放大器
外文關鍵詞: erbium-doped fiber amplifier, ytterbium-doped fiber amplifier
相關次數: 點閱:181下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文採用同向幫浦架構,幫浦光源為915nm,模擬core pumping與cladding pumping幫浦方式,976nm摻鐿光纖放大器,在本文中推導出適用於core pumping與cladding pumping時態式與穩態光纖放大器的模擬計算公式。對於core pumping光纖放大器而言,我們分別使用了976nm CW與脈衝兩種作為訊號源,在模擬過程中我們找到了最佳化dBL值,以便我們找出最佳化增益光纖長度,並且驗證了脈衝式光纖放大器可以直接擬合CW光纖放大器的放大特性。對於cladding pumping光纖放大器而言,我們只使用了976nm CW作為訊號源,透過模擬結果我們提出兩種方法可以提升cladding pumping光纖放大器的放大特性。

    The purpose of the study is to simulate and numerically analyze the 976nm ytterbium-doped fiber amplifiers using core and cladding pumping on forward pumping framework, and 915nm as pump source. In the thesis, we respectively derive appropriate equations for modeling fiber amplifiers in time-dependent state and steady state. For 976nm CW and pulsing fiber amplifiers using core pumping, we have found out the optimal dBL so that the optimization length of gain fiber can be known. Also, we have demonstrated that the CW fiber amplifiers are matching the amplification property of the pulsing fiber amplifiers. For 976nm CW fiber amplifiers using cladding pumping, we have pointed out two methods to raise the amplification of 976nm CW fiber amplifiers by simulation results.

    摘要 i Abstract ii 致謝 iii 圖目錄 vii 符號定義 xii 第1章 緒論 1 1-1 前言 1 1-2 研究動機及方法 6 1-3 論文架構 14 第2章 光纖放大器基本原理 15 2-1 增益光纖能階介紹 15 2-2 速率方程式 17 2-3 飽和功率密度與幫浦飽和功率密度 20 2-4 Core pumping幫浦方式,時態式光纖放大器之模擬推導 22 2-5 Core pumping幫浦方式,穩態CW光纖放大器之模擬推導 26 2-6 Clad pumping幫浦方式,時態式光纖放大器之模擬推導 31 2-7 Clad pumping幫浦方式,穩態CW光纖放大器之模擬推導 34 第3章 Core pumping光纖放大器模擬分析 37 3-1 976nm CW光纖放大器之時態式模擬計算 38 3-1-1 無訊號源輸入,光纖放大器之時態式模擬計算 38 3-1-2 具有CW訊號源輸入,光纖放大器之時態式模擬計算 42 3-2 光纖放大器之穩態模擬計算 (非時態式,t→∞) 48 3-2-1 無訊號源輸入,光纖放大器之穩態模擬計算 48 3-2-2 具有CW訊號源輸入,光纖放大器之穩態模擬計算 50 3-3 增益光纖最佳化dBL探討 53 3-4 光纖放大器之飽和功率密度與放大增益探討 57 3-5 脈衝式光纖放大器模擬 61 3-6 脈衝式光纖放大器擬合CW光纖放大器之輸出特性模擬 68 第4章 Clad pumping光纖放大器模擬分析 72 4-1 976nm CW光纖放大器之時態式模擬計算 73 4-1-1 無訊號源輸入,光纖放大器之時態式模擬計算 73 4-1-2 具有CW訊號源輸入,光纖放大器之時態式模擬計算 77 4-2 光纖放大器之穩態模擬計算 (非時態式,t→∞) 81 4-2-1 無訊號源輸入,光纖放大器之穩態模擬計算 81 4-2-2 具有CW訊號源輸入,光纖放大器之穩態模擬計算 83 4-3 光纖放大器之幫浦飽和功率密度探討,並討論幫浦方式 clad pumping與core pumping之差異性。 86 4-4 光纖放大器之功率限制Γ探討 91 第5章 總結與未來展望 93 5-1 模擬結果總結 93 5-2 未來展望 95 參考文獻 96

    [1] K.C. Kao and G.A , Hockham, “Dielectric-fibre surface waveguides for optical frequencies,” IEE PROCEEDINGS, Vol. 133, Pt. J, No. 3, JUNE 1986
    [2] E. Desurvire, J. Simpson and P. Becker, “High-gain erbium-doped traveling-wavefiber amplifier“Opt. Lett. 12 (11), pp. 888-890 (1987).
    [3] S. Yan, A. K. Srivastava, Z. Jianhui, and J. W. Sulhoff, “Optical fiber amplifiers for WDM-optical networks”, Bell labs Tech. J, vol. 4, no 1,pp. 187-206, January-March, 1999.
    [4] C. Giles and E. Desurvire, "Modeling erbium-doped fiber amplifiers,"IEEE/OSA J. Lightwave Technol. 9 (2), pp. 271-283 (1991).
    [5] See the website http://www.rp-photonics.com/optical_fiber_communications.html
    [6] See the website http://www.rp-photonics.com/rare_earth_doped_fibers.html
    [7] J. A. Álvarez-Chávez, H. L. Offerhaus, J. Nilsson, P. W. Turner, W. A: Clarckson and D. J. Richardson, “High-energy, high-power ytterbium-doped Q-switched fiber laser,” Opt. Lett. 25, 37-39 (2000).
    [8] J. Y. Huang, H. C. Liang, K. W. Su, and Y. F. Chen, “High power passively Q-switched ytterbium fiber laser with Cr4+:YAG as a saturable absorber,” Opt. Express 15, 473-479 (2007).
    [9] Tzong-Yow Tsai, Yen-Cheng Fang, Huai-Min Huang, Hong-Xi Tsao, and Shih-Ting Lin, “Saturable absorber Q- and gain-switched all-Yb3+ all-fiber laser at 976 and 1064 nm, ” Optics Express Vol. 18, No. 23, pp. 23523-23528, Nov. 2010.
    [10] D. Zalvidea, N. A. Russo, R. Duchowicz, M. Delgado-Pinar, A. Diez, J. L. Cruz, and M. V. Andres, “High repetition rate acoustic-induiced Q-switched all-fiber laser” Opt. commum. 244, 315-319 (2005).
    [11] A. Isomäki and O. G. Okhotnikov ,“All-fiber ytterbium soliton mode-locked laser with dispersion control by solid-core photonic bandgap fiber,” Optics Express, Vol. 14, Issue 10, pp. 4368-4373 (2006)
    [12] V. P. Kalosha, Liang Chen, and Xiaoyi Bao,“Ultra-short pulse operation of all-optical fiber passively mode-locked ytterbium laser,” Opt ics Express 14(11):4935-45 (2006)
    [13] H. Pask, R. Carman, D. Hanna, A. Tropper, C. Mackechnie, P. Barber and J.91 Dawes, "Ytterbium-doped silica fiber lasers: versatile sources for the1-1.2 μm region," IEEE J. Sel. Top, pp. 2-13 (1995).
    [14] R. Paschotta, J. Nilsson, Anne C. Tropper, and David C. Hanna., “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33 (7), 1049 (1997)
    [15] H T Zhang, C Zheng, P Yan, M L Gong, Q R Xiao and Q Zhao,“13.9-mJ all fiber wide band ytterbium-doped fiber amplifier,” Laser Phys.Lett. 9744(2012)
    [16] J. M. Sousa, J. Nilsson, C. C. Renaud, J. A. Alvarez-Chavez, A. B. Grudinin, and J. D. Minelly,“Broadband diode-pumped ytterbium-doped fiber amplifier with 34 dBm output power,” IEEE Photonics Technology Letters, vol. 11, issue 1, pp. 39-41
    [17] Raymond J. Beach, Alexander D. Drobshoff, and Stephen A. Payne,“Narrow-line ytterbium fiber master-oscillator power amplifier,” Optical Society of America Journal B, Volume 19, Issue 5, pp. 981-991 (2002).
    [18] A. Galvanauskas, M. Cheng, K. Hou and K. Liao, “High peak power pulse amplification in large-core Yb-doped fiber amplifiers,” IEEE J. Sel. Top.Quantum Electron. 13 (3), pp. 559-566 (2007).
    [19] J. R. Marciante and J. D. Zuegel, “High-gain, polarization-preserving,Yb-doped fiber amplifier for low-duty-cycle pulsamplification,”Applied Optics, Vol. 45, Issue 26, pp. 6798-6804 (2006)
    [20] C. Wise and I. O. Musgrave, “Investigation into Yb-doped fibre amplifiers as pre-amplifiers for Vulcan,” Central Laser Facility Annual Report 2008/2009
    [21] Jacek Swiderski, Andrzej Zajac and Marek Skorczakowski, “Diode-seeded nanosecond Yb-doped fiber amplifier operating at the repetition rate up to 500 kHz,” Optica Applicata, Vol. XXXVIII, No. 4, (2008)
    [22] Aude Bouchier, Gaelic Lucas-Leclin, François Balembois and Patrick Georges, “Theoretical and experimental investigations of a single-mode 976-nm Yb-doped fiber amplifier,” Solid State Lasers and Amplifiers, Volume 5460, pp. 23-30 (2004).
    [23] Aude Bouchier, Gaëlle Lucas-Leclin, Francois Balembois and Patrick Georges, “Theoretical and experimental study of the amplification of a 976-nm laser diode in a single-mode ytterbium-doped fiber,” OSA Trends in Optics and Photonics Series,Volume 94,pp. 140-144(2004)
    [24] Aude Bouchier, Mikhaël Myara, Gaëlle Lucas-Leclin, Patrick Georges, “Pulsed single-mode Yb-doped fibre amplifier around 976 nm: numerical modelling and experimental study,” Fiber Lasers VII: Technology, Systems, and Applications, Volume 7580, pp. 75802W-75802W-8 (2010).
    [25] E. Snitzer, L. Tumminelli, F. Hakimi, N.M. Chu, and T. Haw (1989). “Doubly clad high brightness Nd fiber laser pumped by GaAlAs phased array,”. Optical Fiber Communication Conference. PD7.
    [26] A. Bertoni and G. Reali, “A model for the optimization of double-clad fiber laser operation,” Appl. Phys. B 66 (5), pp. 547-554 (1998).
    [27] Joseph T. Verdeyen, “Laser Electronics,” prentice hall series in solid state physical electronics

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE