簡易檢索 / 詳目顯示

研究生: 陳奕旻
Chen, Yi-Min
論文名稱: 一維河岸及河床變動水理模式之研究
Numerical Simulation on River Bed and Bank Evolution
指導教授: 謝正倫
Shieh, Chjeng-Lun
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 108
中文關鍵詞: 一維輸砂模式河道動床底床高程變動河岸變動
外文關鍵詞: one-dimensional sediment transportation model, movable bed, bed evolution, bank evolution
相關次數: 點閱:117下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 天然河道中,水不單只會影響河床之輸砂情形,亦會影響河岸坡面上之輸砂變化,甚而危害河岸兩旁之人民財產安全。因此河道治理時需要一套有效模擬河川地形變動之模式,但目前現有的一維水理輸砂模式無法模擬河寬隨時間變動之現象,所以本研究目的在建立一維河道土砂運動模式可模擬出河道沿程之水理、底床高程與河寬變動之現象。
    本模式之數值方法是以顯式有限差分法(Explicit Finite Difference Method),將模式採用之基本方程式離散化處理,並配合分離演算法(Uncoupled Method)以計算水、砂之運動過程。爾後則針對模式本身進行穩定性、水砂守恆性、及參數敏感性分析等三種基本數值測試,模式測試採取河道束縮、拓寬型態作為地形輸入條件,以觀察不同的河道型態對水砂間交互作用之影響,模式之測試結果均能符合定性與定量標準。最後以Cantelli(2004)實驗作為模式驗證的案例,對於模擬移除壩後的底床高程與橫斷面水面寬之變動情形,模式計算成果與實驗結果有相同之趨勢,顯示出本模式在模擬河床與河岸變動上具有相當的準確性。

    In the natural river, sediment transportation not only occurs on river bed but also on river bank. When typhoon or storm rainfall occur river bank erosion serious could endanger the safety and property of people living on both sides of the river. For river management, it is important to have a model to simulate the river bank evolution, but the present one-dimensional movable bed numerical model cannot simulate the river bank width change with time. Therefore, the aim of this study is to establish a one-dimensional movable bed numerical model, calculating the hydrodynamics, sediment transportation rate, and river bed and bank evolution. In the study using the explicit finite difference method to discretize the govern equation, such as continuity equation, sediment continuity equation, and river bed and bank evolution equation, and apply the uncoupled method to construct the simulation model. And in order to ensure the feasibility and practicality of the model, the stability, conservation, and sensitivity analysis are tested well by numerical experiment (cases about narrowing and widening channel types in this research). Finally, by using the experiment case of Cantelli et al. (2004), recording the changed bed elevation and water surface width after removing the dam, as verification data and the simulation result was comparable to experiment case.

    摘要I AbstractII 誌謝III 目錄V 表目錄VII 圖目錄VIII 符號說明X 第一章 緒論1 1-1研究動機與目的1 1-2前人研究2 1-2-1水理輸砂相關模式比較2 1-2-2河床輸砂理論回顧7 1-2-3河岸輸砂理論回顧13 1-3研究方法與架構 16 第二章 基本理論19 2-1河川水流基本方程式19 2-2河川輸砂基本方程式23 2-2-1河床輸砂基本方程式23 2-2-2河岸輸砂公式30 2-3河川變動基本方程式38 第三章 模式建立45 3-1模式架構45 3-1-1河川水流差分方程式47 3-1-2河川輸砂差分方程式52 3-1-3河床與河岸變動差分方程式53 3-2起始條件與邊界條件55 3-3模式計算流程56 第四章 模式測試57 4-1測試條件設定57 4-2穩定性分析60 4-3守恆性分析65 4-5參數敏感性分析87 第五章 模式驗證92 5-1實驗案例92 5-2數值模擬95 5-2-1模式輸入條件95 5-2-2模擬成果96 第六章 結論與建議101 6-1結論101 6-2建議102 參考文獻103

    1.林彥均,混合流況下非均質動床之數值模擬,國立成功大學水利及海洋工程研究所碩士論文,2009。
    2.張家榮,河岸侵蝕之實驗研究,國立成功大學水利及海洋工程研究所碩士論文,1997。
    3.蔡元融,流域水沙生產及運動模式之研究,國立成功大學水利及海洋工程研究所博士論文,2012。
    4.謝慧民,網路型河川擬似二維沖淤行為之數值模擬,國立台灣大學土木工程學研究所博士論文,1996。
    5.謝正倫、黃進坤、劉長齡,亞臨界流況下水庫淤沙特性之一維數值模擬,臺灣水利,第40卷第1期,第67-78頁,1992。
    6.謝正倫、黃進坤、劉長齡,超臨界流況下水庫淤沙特性之一維數值模擬,臺灣水利,第40卷第2期,第46-55頁,1992。
    7.平野宗夫,拡幅を伴う流路変動について土木學會論文報告集,第210號,1973。
    8.岩垣雄一,限界掃流力の流体力學的研究土木學會論文報告集,第41號,第1-21頁,1956。
    9.長谷川和議,非平衡性を考慮した側岸浸食量式に関する研究土木學會論文報告集,第316號,1981。
    10.板倉忠興,河川における乱流拡散現象に関する研究土木試験所報告,第83卷,第1-90頁,1984。
    11.黒木幹男、岸力、清水康行,河床変動の数値計算法に関する研究第17回自然災害総合シンポジウム講演論文集,第175-179頁,1980。
    12.蘆田和男、道上正規,混合砂礫の流砂量と河床變動に關する研究混合砂礫の流砂量と河床變動に關する研究,第14號B,第259-273頁,1971。
    13.謝慧民、李鴻源、賴進松,複雜河系沖淤模式NETSTARS V3.0 使用者技術手冊,台灣首府大學資訊與多媒體設計學系,研究報告第10101號,2012。
    14.錢寧、萬兆惠,泥砂運動力學泥砂運動力學,1991。
    15.土木學會,水理公式集,日本,1999。
    16.吉川秀夫,流砂の水理學丸善株式會社,日本,1985。
    17.Bagnold, R. A. Auto-suspension of transported sediment;turbidity, Proc. Royal. Soc. London, Ser. A., 265(1322), PP.314–319, 1962.
    18.Cantelli, A., Paola, C. , and Parker, G., Experiments on upstream migrating erosional narrowing and widening of an incisional channel caused by dam removal, Water Resources Research, 40, 2004.
    19.Cantelli, A., Wong, M., Parker, G., and Paola, C., Numerical model linking bed and bank evolution of incisional channel created by dam removal, Water Resources Research, 43, 2007.
    20.Egiazaroff, I.V. , Calculation of non-uniform sediment concentrations, Journal of the Hydraulics Division, Proceedings of the American Society of Civil Engineers, 91, HY4, PP.225-247, 1965.
    21.Elder, J., W., The dispersion of marked fluid in turbulent shear flow, Journal of Fluid Mechanics, 5, PP.544-560, 1959.
    22.Einstein, H. A., The bed-load function for sediment transport in open channel flows, U.S. Department of Agriculture, Soil Conservation Service., 1950.
    23.Einstein, H., A., and Chien, N., Second approximation to the solution of suspended-load theory, University of California, Institute of Engineering Research, 3., 1954.
    24.Einstein, H. A., and Chien, N. Effects of heavy sediment concentration near the bed on velocity and sediment distribution. MRD Sediment Ser. NO. 8, Univ. of California at Berkeley, Institute of Engineering Research, Berkeley, Calif., 1955.
    25.Engelund, F., and Hansen, E., A monograph on sediment transport in alluvial streams, 1972.
    26.Hasegawa, K., Universal bank erosion coefficient for meandering rivers, Journal of Hydraulic Engineering, 115(6), PP.744-765, 1989.
    27.Ikeda, S., Incipient Motion of sand particles on side slopes, Journal of the Hydraulics Division, 108(1), PP.95-114, 1982.
    28.Ikeda, S., Parker, G., and Yoshitaka, K., Stable width and depth of straight gravel rivers with heterogeneous bed materials, Water Resources Research, 24(5), PP. 713-722, 1988.
    29.Johannesson, H., and Parker, G. , Linear theory of river meanders, Water Resources Monograph, 12, PP.181-213, 1989.
    30.Lane, E. W., Design of stable channels, Journal of Hydraulic Engineering, 120, PP.1234-1279, 1955.
    31.Meyer-Peter, E., and R., Müller., Formulae for Bed load Transport, Trans. Intern. Assoc. Hyd. Res., 2nd. Meeting, Stockholm., PP.39-65, 1948.
    32.Molinas, A., and Yang, C. T. Computer program user's manual for GSTARS, 1986.
    33.Parker, G., Hydraulic geometry of active gravel rivers, Journal of the Hydraulics Division, 105(9), PP. 1185-1201, 1979.
    34.Parker, G., Self-formed straight rivers with equilibrium banks and mobile bed. Part 1. The sand-silt river, Journal of Fluid Mechanics, 89(1), PP. 109-125, 1978.
    35.Parker, G., Self-formed straight rivers with equilibrium banks and mobile bed. Part 2. The gravel river, Journal of Fluid Mechanics, 89(1), PP. 127-146, 1978.
    36.Parker, G., and Andrews, E. D. , Sorting of bed load sediment by flow in meander bends, Water Resources Research, 21(9), PP. 1361-1373, 1985.
    37.Rickenmann, D., Sediment transport in Swiss torrents, Earth Surface Processes And Landforms, 22, PP. 937–951, 1997.
    38.Rouse, H., Modern conceptions of the mechanics of turbulence, Transaction of the ASCE, 102, 1937.
    39.Rubey, W. W., Modern conceptions of the mechanics of turbulence Transaction of the fluid turbulence, ASCE, 102, PP. 4630, 1937.
    40.Sekine, M., and Parker, G., Bed‐load transport on transverse slope. I, Journal of Hydraulic Engineering, 118(4), PP. 513-535, 1992.
    41.Van Rijn, L.C., Sediment transport, part I: bed load transport. Journal of Hydraulic Engineering, PP. 1431-1456, 1984.
    42.Van Rijn, L. C., Sediment transport, part II: suspended load transport, Journal of Hydraulic Engineering, ASCE, 110(11), PP. 1613–1641, 1984.
    43.Van Rijn, L. C., Sediment transport, part III: bed forms and alluvial roughness, Journal of Hydraulic Engineering, ASCE, 110(12), PP. 1733–1754, 1984.
    44.Van Niekerk, A., K.R. Vogel, R.L. Slingerland, and J.S. Bridge, Routing of Heterogeneous Size-Density Sediments Over a Movable Stream Bed: Model Development, Journal of Hydraulic Engineering, 118(2), PP. 246-262, 1992.
    45.Yalin, M. S., and Karahan, E., Inception of sediment transport, Journal of Hydraulic Engineering., ASCE, 105(11), PP. 1433-1443, 1979.
    46.Karim, M., F. ,IALLUVIAL:Analysis of sediment continuity and application to the Missouri river, IIHR Report No.292, Iowa institute of Hydraulic Research, The University of Iowa, Iowa City, Iowa 52242, 1985.
    47.Nakanishi, S ., Takahashi, K., and Hasegawa, K., One-dimensional analysis of bed evolution accompanying bank erosion, Division of Environmental Field Engineering, Hokkaido University, Sapporo, Japan, 2005.
    48.Chang, H.H.,FLUVIAL-12 Mathematical Model for Erodible Channels, Users Manual.
    49.Hamrick, J.M., and Hayter, E.J., EFDC1D - A One Dimensional Hydrodynamic and Sediment Transport Model for River and Stream Networks: Model Theory and Users Guide.” EPA/600/R-01/073, September, 2001.
    50.Karim, M.F., IALLUVIAL2 A Computer Program for Water and Sediment Routing in Alluvial Channels, US Army Corps of Engineers Hydrologic Engineering Center.
    51.MIKE 11, A modeling system for rivers and channels, DHI, April, 2003.
    52.Yang, C.T., and Simões, F.J.M., GSTARS 3.0: A Numerical Model for Reservoir Sedimentation.

    下載圖示 校內:2016-08-27公開
    校外:2016-08-27公開
    QR CODE