| 研究生: |
黃世杊 Huang, Shih-Hsun |
|---|---|
| 論文名稱: |
摻雜不同形貌氧化鋅對單晶粒超導體之影響 Effect of Different Morphology of ZnO as Precursor in the Single Grain Superconductor |
| 指導教授: |
陳引幹
Chen, In-Gann |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 氧化鋅 、奈米柱 、釔鋇銅氧 、超導體 |
| 外文關鍵詞: | ZnO, Nanorods, YBCO, Superconductor |
| 相關次數: | 點閱:57 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用化學及柱狀缺陷對YBaCuO超導體之臨界電流密度提升之特性,利用化學氣相沉積法(CVD)長氧化鋅奈米柱於YBaCuO粉體做為前驅物,摻雜於YBaCuO後長完單晶以期得到高臨界電流,並與摻入市售氧化鋅奈米顆粒與次微米顆粒做比較。換言之,我們利用一維的氧化鋅奈米柱取代零維的氧化鋅奈米顆粒以獲得更高的化學及柱狀缺陷。並逐一探討不同實驗參數如持溫時間、氧氣濃度等對於氧化鋅沉積於超導粉體形貌的影響。
CVD實驗於適當製程溫度與氣體通量下,長在Y211的奈米柱徑約為50nm,長約為1μm,長寬比約為15至20。而後將含有氧化鋅奈米柱之Y211粉末送ICP-MS分析鋅,得知在粉末中濃度約在2~5wt%間,並依此結果做為摻入成長YBaCuO單晶之鋅含量定量依據。在77K添加適量氧化鋅下,由Jc-H可得奈米柱的零場Jc值約為55,000 A/cm2,高於奈米顆粒的40,000 A/cm2,也高於次微米顆粒的25,000 A/cm2,更高於標準樣品(未添加)的18,000 A/cm2。在Fp部分,0.1wt%的奈米顆粒最高為16 kT•A/cm2,而奈米柱最高為35 kT•A/cm2,與文獻添加Pt樣品的最高值23 kT•A/cm2相比,我們的Fp高於文獻值。根據scaling law,添加氧化鋅會使整體趨向Dk pinning(因外加磁場增加造成的釘札),而添加奈米柱更往此趨勢與Normal pinning(零場下的釘札)移動。
In the study chemical and columnar defects can increase Jc of the YBaCuO superconductor. By chemical vapor deposition ZnO nanorods are growing on YBaCuO powder as precursor to dope in YBaCuO superconductor for single grain growth to obtain high Jc. And compare superconductivity with commercial ZnO nano and sub-micro particles. In other words, 1-Dimension columnar defects can be considered as stronger pinning centers than 0-dimension ones. And investigate the influence parameters such as holding time, oxygen concentration on the shape of ZnO.
The aspect ratio of ZnO nanorods growing on Y211 is c.a. 15 to 20 as CVD procedure under proper temperature and gas flow. The length of each nanorod is c.a. 1μm, 50nm width. The Zn concentration of the precursors is around 2~5 wt% by ICP-MS, which is the quantitative results for these precursors doping in YBaCuO. Under 0 field, at 77K and properly ZnO doping, the Jc of nanordos(NR) is c.a. 55,000 A/cm2, higher than nanoparticles’(NP) 40,000 A/cm2 and sub-micro particles’(MP) 25,000 A/cm2, the lowest Jc is Zn free standard, 18,000 A/cm2. For pinning force, the Fp of NR is 35 kT•A/cm2, NP is 16 kT•A/cm2. Comparing with our results and 23 kT•A/cm2 Gruss’s with extra Pt doping, our results had better performance than the references. Base on the scaling law, doping ZnO can shift to Dk pinning, moreover, the nanorods would shift to normal and Dk pinning.
1. M. Cyrot and D. Pavuna, “Introduction to Superconductivity and High-Tc Materials”, World Scientific, (1992).
2. M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang and C.W. Chu, “Superconductivity at 93K in a New Mixed-phase Y-Ba-Cu-O“Compound System at Ambient Pressure”, Physical Review Letter 58, 908(1987).
3. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani and J. Akimitsu, “Superconductivity at 39K in magnesium diboride”, Nature 410, 63-64. (2001)
4. K. Shimizu, H. Ishikawa, D. Takao, T. Yagi and K. Amaya, “Superconductivity in compressed lithium at 20 K”, Nature, 419, 597 - 599(2002)
5. Y. Kamihara, M. Hirano, H. Yanagi, T. Kamiya, Y Saitoh, E. Ikenaga, K. Kobayashi and H. Hosono. “Electromagnetic properties and electronic structure of the iron-based layered superconductor LaFePO”, Physical Review B 77, 214515 (2008)
6. F. C. Hsu, J. Y. Luo, K. W. Yeh, T. K. Chen, T. W. Huang, P. M. Wu, Y. Chi .Lee, Y. L. Huang, Y. Y. Chu, D. C. Yan, M. K Wu “Superconductivity in the PbO-type structure–FeSe”. Proceedings of the National Academy of Sciences, 105-38, 14262(2008)
7. C. P. Bean, “Magnetization of High-Field Superconductors”. Review Modified Physics 36, 31 (1964)
8. R. Triboulet, J. Perriere, “Epitaxial growth of ZnO films”, Progress in Crystal Growth and Characterization of Materials, 47, 65, (2003).
9. D. S. King, R. M. Nix, “Thermal Stability and Reducibility of ZnO and Cu/ZnO Catalysts”, Journal of Catalysist, 160, 76, (1996).
10. T. Minami, “New n-Type Transparent Conducting Oxides”, Materials Research Society bulletin., 25, 38, (2000).
11. D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, T. Goto, “Optically pumped lasing of ZnO at room temperature”, Applied Physics Letters., 70, 2230, (1997).
12. J. Zhong, A. H. Kitai, P. Mascher, W. Puff, “The Influence of Processing Conditions on Point Defects and Luminescence Centers in ZnO”, Journal of The Electrochemical Society., 140, 3644, (1993).
13. Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Do an, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices”, Journal of Applied Physics., 98, 041301, (2005).
14. 陳一誠.劉旭禎, “一氧化碳感測技術”, 工業材料雜誌, 第227 期, 68, (2005).
15. B. Meyer, D. Marx, “Density-functional study of the structure and stability of ZnO surfaces”, Physical Review B., 67, 035403, (2003).
16. R.A. Laudise, A.A. Ballman, “Hydrothermal Synthesis of Zinc Oxide and Zinc Sulfide”, Journal of Physical Chemistry., 64, 688, (1960).
17. W. J. Li, E. W. Shi, W. Z. Zhong, Z. W. Yin, “Growth mechanism and growth habit of oxide crystals”, Journal of Crystal Growth., 203, 186, (1999).
18. Z. L. Wang, “Zinc oxide nanostructures: growth, properties and Applications”, Journal of Physics: Condensed Material., 16, R829, (2004).
19. V. G. Dubrovskii, G. E. Cirlin, I. P. Soshnikov, A. A. Tonkikh, N. V. Sibirev, Y. B. Samsonenko, and V. M. Ustinov, “Diffusion-induced growth of GaAs nanowhiskers during molecular beam epitaxy: Theory and experiment”, Physical Review B, 71, 205325, (2005).
20. J. Johansson, C. Patrik T. Svensson, T. Ma°rtensson, L. Samuelson, and W. Seifert, “Mass Transport Model for Semiconductor Nanowire Growth”, Journal of Physical Chemistry B., 109, 13567, (2005).
21. H. J. Fan, A. S. Barnard, M. Zacharias, “ZnO nanowires and nanobelts: Shape selection and thermodynamic modeling”, Applied Physics Letters., 90, 143116, (2007).
22. V.G. Dubrovskii, N.V. Sibirev, “General form of the dependences of nanowire growth rate on the nanowire radius”, Journal of Crystal Growth., 304, 504, (2007).
23. T. Y. Tan, N. Li, and U. Gösele, “Is there a thermodynamic size limit of nanowires grown by the vapor-liquid-solid process?”, Applied Physics Letters, 83, 1199, (2003).
24. Z. L. Wang, “Functional Oxide Nanobelts: Materials, Properties and Potential Applications in Nanosystems and Biotechnology”, Annual Review of Physical Chemistry., 55, 96, (2004).
25. Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of Semiconducting Oxides”, Science., 291, 1947, (2001).
26. E. Comini, G. Faglia, and G. Sberveglieri, Z. Pan and Z. L. Wang, “Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts”, Applied Physics Letters., 81, 1869, (2002).
27. M. S. Arnold, P. Avouris, Z. W. Pan, and Z. L. Wang, “Field-Effect Transistors Based on Single Semiconducting Oxide Nanobelts”, Journal of Physical Chemistry B.,107 , 659, (2003).
28. W. L. Hughes and Z. L. Wang, “Nanobelts as nanocantilevers”, Applied Physics Letters., 82, 2886, (2003).
29. X. Y. Kong and Z. L. Wang, “Spontaneous Polarization-Induced Nanohelixes, Nanosprings, and Nanorings of Piezoelectric Nanobelts”, Nano Letters., 3, 1625, (2003).
30. X. Y. Kong, Y. Ding, R. Yang, and Z. Lin Wang, “Single-Crystal Nanorings Formed by Epitaxial Self-Coiling of Polar Nanobelts”, Science. 303, 1348, (2004).
31. Z. Zhang, S. J. Wang, T. Yu and T. Wu, “Controlling the Growth Mechanism of ZnO Nanowires by Selecting Catalysts”, Journal of Physical Chemistry C.,111, 17500, (2007).
32. W. D. Yu, X. M. Li, and X. D. Gao, “Self-catalytic synthesis and photoluminescence of ZnO nanostructures on ZnO nanocrystal substrates”, Applied Physics Letters., 84, 2658, (2004).
33. L. Civale, A.D. Marwick, T.K. Worthington, M.A. Kirk, J.R. Thompson, L. Krusin-Elbaum, Y. Sun, J.R. Clem, and F. Holtzberg, “Vortex confinement by columnar defects in YBa2Cu3O7 crystals: Enhanced pinning at high fields and temperatures”, Physical Review Letter, 67, 648 (1991)
34. G. Chen, J. Liu, R. Weinstein, R. Shaw, Advances in Superconductivity IX, Editors, S. Nakajima, M. Murakami, (Springer-Verlag Tokyo) 657 (1997)
35. R. Weinstein, R. P. Sawh, D. Parks, M. Murakami, T. Mochida, N. Chikumoto, G. Krabbes, and W. Bieger, “Very high values of Jc obtained in NdBa2Cu3Ox by use of the U/n process”, Physica C 383 214-222 (2002)
36. P. Yang and C. M. Lieber, “Nanorod-Superconductor Composites: A Pathway to,Materials with High Critical Current Densities”, Science 273 p1836 (1996)
37. M. Tinkham, “Introduction to Superconductivity”, McGraw-Hill, Inc. (1996)
38. T.R. Chien, Z.Z. Wang, N.P. Ong, “Effect of Zn Impurities on the Normal-State Hall Angle in Single-Crystal YBa2Cu3-xZnxO7-δ”, Physical Review Letters, 67, 15 (1991)
39. K. Semba and A. Matsuda, “Normal and superconductive properties of Zn-substituted single-crystal YBa2(Cu1-xZnx)3O7-δ”, Physical Review B, 49, 14 (1994)
40. G. Fuchs, P. Schätzle, G. Krabbes, S. Gruß, P. Verges, K.-H. Müller, J. Fink,and L. Schultz, “Trapped magnetic fields larger than 14 T in bulk YBa2Cu3O7-x”, Applied Physics Letters, 76, 15 (2000)
41. S. Gruss, G. Fuchs, G. Krabbes, P. Verges, G. Stöver, K.-H. Müller, J. Fink,and L. Schultz, “Superconducting bulk magnets: Very high trapped fields and cracking” Applied Physics Letters, 79, 19 (2001)
42. L. Shlyk, G. Krabbes, G. Fuchs, K. Nenkov, and P. Verges, “Melt-textured YBa2Cu3O7 based material doped with Li and Zn: Comparisonof high trapped fields and pinning” Applied Physics Letters, 81, 26 (2002)
43. H. Fujimoto, C. Cai and E. Ohtabara, “Sm-Ba-Cu-O bulk superconductors melt-processed in air”, Physica C 372-376 1111-1114. (2002)
44. S. H. Hsu, I. G. Chen and M. K. Wu, “Preparation of c-oriented Nd-Ba-Cu-O/Ag melt-growth sample in air”, 15 653-659. (2002)
45. Y. A. Jee, G. W. Hong, C. J. Kim and T.H. Sung, “Dissolution of SmBa2Cu3O7-y seed crystals during top-seeded melt growth of YBa2Cu3O7-y”, Superconductor Science and Technology 11 650-658. (1998)
46. S. I. Yoo, N. Sakai, H. Kojo, S. Takebayashi, N. Hayashi, M. Takahashi, K. Sawada, T. Higuchi and M. Murakami, “Progress in melt processing of Nd-Ba-Cu-O superconductors”, IEEE Transaction on Applied Superconductivity, 7, 2 June 1997.
47. M. Murakami, “Key issues for the characterization of RE-Ba-Cu-O systems (RE:Nd, Sm, Eu, Gd)”, Applied Superconductivity Vol.6, No.2-5 51-59. (1998)
48. T. Wu, T. Egi, R. Itti, K. Kuroda and N. Koshizuka, Advances in Superconductivity VIII 481 (1996)
49. M. T. Gonźalez, N. H. Babu and D.A. Cardwell, “Enhancement of Jc under magnetic field by Zn doping in melt-textured Y–Ba–Cu–O superconductors”, Superconductor Science and Technology 15, 1372–1376 (2002)
50. Y. X. Zhou, S. Scruggs and K. Salama, “Effects of ionic doping on superconducting properties of melt textured YBa2(Cu1−xMx)3O7−δ (M = Co, Ni, Zn or Ga) large grains” Superconductor Science and Technology 19, S556–S561(2006)
51. F. Q. He and Y. P. Zhao, “Growth of ZnO nanotetrapods with hexagonal crown”, Applied Physics Letters, 88, 193113, (2006).
52. Y. Zhao, C. H. Cheng and J. S. Wang, “Flux pinning by NiO-induced nano-pinning centres in melt-textured YBCO superconductor”, Superconductor Science and Technology 18, S43–S46 (2005)
53. W. A. Fietz and W. W. Webb, “Hysteresis in Superconducting Alloys—Temperature and Field Dependence of Dislocation Pinning in Niobium Alloys”, Physical Review, 178 (1969) 657
54. D. Dew-Hughes, “Flux pinning mechanisms in type II superconductors”, Philos. Mag. 30, 293. (1974)
55. W.J. Li, E.W. Shi, W.Z. Zhong, Z.W. Yin, “Growth mechanism and growth habit of oxide crystals”, Journal of Crystal Growth , 203, 186-196 (1999)
56. P. Kummeth and C. Struller, “Dimensionality of flux pinning in (Bi,Pb)2Sr2Ca2Cu3O10+δ Ag tapes with columnar defects-Crossover from two-dimensional to three-dimensional behavior.”, Applied Physics Letters 65 ,10, (1994)
57. Y. Shiohara, A. Endo, “Crystal growth of bulk high-Tc superconducting oxide materials”, Materials Science and Engineering, R19, No1-2 (1997) 1-81.
58. 朱志祥, “以奈米金屬懸浮液做為催化劑成長氧化鋅奈米結構之研究”, 國立成功大學材料科學與工程研究所碩士論文,民97年6月
59. http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html
60. N. H. Babu, K. Iida, Y. Shi, T. D. Withnell and D. A. Cardwell, “YBa2Cu3O7−δ/Y2Ba4CuMOy single grain nanocomposite Superconductors with high critical current densities”, Supercond. Sci. Technol. 19 S461–S465 (2006)
校內:2015-08-02公開