| 研究生: |
江浤竹 Chiang, Hung-Chu |
|---|---|
| 論文名稱: |
應用熱成像技術研究金屬玻璃雷射箔材列印技術的掃描策略 Use of In-situ Thermography to Study Scan Strategy for Laser Foil Printing of Metallic Glass |
| 指導教授: |
洪嘉宏
Hung, Chia-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 114 |
| 語文別: | 英文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 積層製造 、金屬玻璃 、雷射箔材列印 、熱成像技術 |
| 外文關鍵詞: | Additive Manufacturing, Metallic Glass, Laser Foil Printing, In-situ Thermal Graphic Monitoring |
| 相關次數: | 點閱:62 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究透過雷射箔材列印(Laser Foil Printing, LFP)技術,探討鋯基金屬玻璃(Zr₆₅.₇Cu₁₅.₆Ni₁₁.₇Al₃.₇Ti₃.₃)在 Zr702 基材上的熱行為,並利用熱成像技術分析雷射掃描策略與熔池冷卻速率之間的關係,特別關注其對熱行為與非晶穩定性的關鍵影響。實驗中使用中波長紅外線(MWIR)攝影機,即時監測熔池與熱影響區(HAZ)的溫度變化,以定量評估冷卻速率與熱演化過程;同時輔以有限元素模擬,以解析熔池溫度梯度與熱傳行為。研究核心在於探討維持非晶結構並避免結晶所需的冷卻條件,並針對連續焊接與離散焊接兩種掃描策略進行比較。後續材料表徵則包括 X 光繞射(XRD)、能量散射光譜(EDS)與顯微硬度測試,用以評估非晶保持、成分分布與機械性能。
研究結果顯示,連續焊接雖可形成較大且較深的熔池,但因能量輸入持續,導致顯著熱累積,使熱影響區擴大,冷卻速率逐漸降低,並在第三層出現部分結晶。相較之下,離散焊接透過局部且間歇性的能量輸入,能維持較高且穩定的冷卻速率,有效抑制熱累積並縮小熱影響區,因此在多層堆疊中均能保持完整的非晶結構。成分分析進一步顯示,隨層數增加,鋯含量逐漸下降而鎳與銅含量上升,但非晶穩定性主要仍受冷卻動態控制。顯微硬度測試亦證實離散焊接試樣的硬度顯著優於連續焊接。
本研究證明雷射掃描策略與熱動力學在金屬玻璃 LFP 製程中具有決定性影響。離散焊接展現出更佳的熱控制能力、非晶保持效果與機械性能,成功建立明確的「製程–結構–性質」關聯,並為推動高性能塊狀金屬玻璃的積層製造提供了重要依據。
This study employs the Laser Foil Printing (LFP) technique to investigate the thermal behavior of zirconium-based metallic glass (Zr₆₅.₇Cu₁₅.₆Ni₁₁.₇Al₃.₇Ti₃.₃)deposited on Zr702 substrates. In-situ thermography was applied to establish the relationship between laser scanning strategies and melt-pool cooling rates, with particular focus on their influence on thermal dynamics and amorphous stability. A mid-wavelength infrared (MWIR) camera was used to monitor the temperature evolution of the melt pool and heat-affected zone (HAZ) in real time, enabling quantitative evaluation of cooling rates and thermal history. Finite element simulations were further conducted to analyze melt pool temperature gradients and heat transfer behavior. The study emphasizes the cooling conditions required for amorphous retention and crystallization avoidance, and compares continuous and discrete welding strategies. Post-process characterization, including X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), and microhardness testing, was carried out to assess amorphous stability, compositional distribution, and mechanical properties.
The results indicate that continuous welding produces larger and deeper melt pools than discrete welding, but sustained energy input leads to significant heat accumulation, broader HAZ, gradually reduced cooling rates, and partial crystallization in the third layer from the substrate. In contrast, discrete welding introduces localized and intermittent energy input, achieving higher and more stable cooling rates, effectively suppressing heat accumulation and minimizing the HAZ. As a result, fully amorphous structures were retained across multiple layers. Compositional analysis further revealed a gradual decrease in zirconium content and enrichment of nickel and copper with increasing build height, although amorphous stability was primarily governed by cooling dynamics. Microhardness testing confirmed the superior hardness of samples from discrete welding compared with continuous welding.
This study demonstrates the role of laser scanning strategy and thermal dynamics in the LFP processing of metallic glass. Discrete welding provides superior thermal control, more reliable amorphous retention, and improved mechanical properties, establishing a clear process–structure–property relationship and offering practical guidelines for advancing the additive manufacturing of high-performance bulk metallic glasses.
[1]DebRoy, T., Wei, H. L., Zuback, J. S., Mukherjee, T., Elmer, J. W., Milewski, J. O., ... & Zhang, W. (2018). Additive manufacturing of metallic components–process, structure and properties. Progress in materials science, 92, 112-224.
[2]Hung, C. H., Shen, Y., Leu, M., & Tsai, H. L. (2017). Mechanical properties of 304L metal parts made by laser-foil-printing process.
[3]Sutton, A. T., Kriewall, C. S., Karnati, S., Leu, M. C., & Newkirk, J. W. (2020). Characterization of AISI 304L stainless steel powder recycled in the laser powder-bed fusion process. Additive Manufacturing, 32, 100981.
[4]Sutton, A. T., Kriewall, C. S., Karnati, S., Leu, M. C., Newkirk, J. W., Everhart, W., & Brown, B. (2020). Evolution of AISI 304L stainless steel part properties due to powder recycling in laser powder-bed fusion. Additive Manufacturing, 36, 101439.
[5]Santecchia, E., Spigarelli, S., & Cabibbo, M. (2020). Material reuse in laser powder bed fusion: Side effects of the laser—metal powder interaction. Metals, 10(3), 341.
[6]Hung, C. H., Turk, T., Sehhat, M. H., & Leu, M. C. (2022). Development and experimental study of an automated laser-foil-printing additive manufacturing system. Rapid Prototyping Journal, 28(6), 1013-1022.
[7]Hung, C. H. (2021). Fabrication of 304L stainless steel and aluminum parts by laser foil printing and process automation. Missouri University of Science and Technology.
[8]Hung, C. H., Sutton, A., Li, Y., Shen, Y., Tsai, H. L., & Leu, M. C. (2019). Enhanced mechanical properties for 304L stainless steel parts fabricated by laser-foil-printing additive manufacturing. Journal of Manufacturing Processes, 45, 438-446.
[9]Rittinghaus, S. K., Throm, F., Wilms, M. B., Hama-Saleh, R., & Rackel, M. W. (2022). Laser fusion of powder and foil–a multi material approach to additive manufacturing. Lasers in Manufacturing and Materials Processing, 9(4), 569-589.
[10]Zhang, W., Abbott, W. M., Sasnauskas, A., Coban, A., Gillham, B., Bitharas, I., ... & Lupoi, R. (2024). Development of a novel powder sheets printing process towards the next generation of additive manufacturing: the role of laser defocusing. Virtual and Physical Prototyping, 19(1), e2361856.
[11]Hung, C. H., Li, Y., Sutton, A., Chen, W. T., Gong, X., Pan, H., ... & Leu, M. C. (2020). Aluminum parts fabricated by laser-foil-printing additive manufacturing: processing, microstructure, and mechanical properties. Materials, 13(2), 414.
[12]Hung, C. H., Chen, W. T., Sehhat, M. H., & Leu, M. C. (2021). The effect of laser welding modes on mechanical properties and microstructure of 304L stainless steel parts fabricated by laser-foil-printing additive manufacturing. The International Journal of Advanced Manufacturing Technology, 112(3), 867-877.
[13]King, W. E., Anderson, A. T., Ferencz, R. M., Hodge, N. E., Kamath, C., Khairallah, S. A., & Rubenchik, A. M. (2015). Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. Applied Physics Reviews, 2(4).
[14]Louvis, E., Fox, P., & Sutcliffe, C. J. (2011). Selective laser melting of aluminium components. Journal of Materials Processing Technology, 211(2), 275-284.
[15]Luo, H., & Du, Y. (2023). Mechanical properties of bulk metallic glasses additively manufactured by laser powder bed fusion: a review. Materials, 16(21), 7034.
[16] Sohrabi, N., Jhabvala, J., & Loge, R. E. (2021). Additive manufacturing of bulk metallic glasses—process, challenges and properties: a review. Metals, 11(8), 1279.
[17]Mohr, M., Wunderlich, R. K. K., Hofmann, D. C. C., & Fecht, H. J. (2019). Thermophysical properties of liquid Zr52. 5Cu17. 9Ni14. 6Al10Ti5–Prospects for bulk metallic glass manufacturing in space. npj Microgravity 5, 24 (2019).
[18]Li, Y., Shen, Y., Leu, M. C., & Tsai, H. L. (2019). Mechanical properties of Zr-based bulk metallic glass parts fabricated by laser-foil-printing additive manufacturing. Materials Science and Engineering: A, 743, 404-411.
[19]Gebert, A., Geissler, D., Pilz, S., Uhlemann, M., Davani, F. A., Hilke, S., ... & Wilde, G. (2020). Studies on stress corrosion cracking of Vit 105 bulk metallic glass. Frontiers in Materials, 7, 128.
[20]Shen, Y., Li, Y., Chen, C., & Tsai, H. L. (2017). 3D printing of large, complex metallic glass structures. Materials & Design, 117, 213-222.
[21]Li, Y., Shen, Y., Chen, C., Leu, M. C., & Tsai, H. L. (2017). Building metallic glass structures on crystalline metal substrates by laser-foil-printing additive manufacturing. Journal of Materials Processing Technology, 248, 249-261.
[22]Sohrabi, N., Jhabvala, J., Kurtuldu, G., Stoica, M., Parrilli, A., Berns, S., ... & Logé, R. E. (2021). Characterization, mechanical properties and dimensional accuracy of a Zr-based bulk metallic glass manufactured via laser powder-bed fusion. Materials & Design, 199, 109400.
[23]Best, J. P., Nomoto, K., Yang, F., Li, B., Stolpe, M., Zeng, L., ... & Kruzic, J. J. (2022). Advanced structural analysis of a laser additive manufactured Zr-based bulk metallic glass along the build height. Journal of materials science, 57(21), 9678-9692.
[24]Sohrabi, N., Parrilli, A., Jhabvala, J., Neels, A., & Logé, R. E. (2021). Tensile and impact toughness properties of a Zr-based bulk metallic glass fabricated via laser powder-bed fusion. Materials, 14(19), 5627.
[25]Sohrabi, N., Ivas, T., Jhabvala, J., Schawe, J. E., Löffler, J. F., Ghasemi-Tabasi, H., & Logé, R. E. (2024). Quantitative prediction of crystallization in laser powder bed fusion of a Zr-based bulk metallic glass with high oxygen content. Materials & Design, 239, 112744.
[26]Zhang, P., Zhang, C., & Liu, L. (2022). Toughening 3D-printed Zr-based bulk metallic glass via synergistic defects engineering. Materials Research Letters, 10(6), 377-384.
[27]Liu, Y., Li, J., Xu, K., Cheng, T., Zhao, D., Li, W., ... & Wei, Q. (2022). An optimized scanning strategy to mitigate excessive heat accumulation caused by short scanning lines in laser powder bed fusion process. Additive Manufacturing, 60, 103256.
[28]Zhang, C., Zhu, Z., Gong, D., & Liu, T. (2024). Influences of island size on the forming quality, microstructure, and tensile properties of laser powder bed fusion Ti-6.5 Al-3.5 Mo-1.5 Zr-0.3 Si alloy. Journal of Materials Research and Technology, 28, 2714-2726.
[29]Wang, Y. X., Zhao, Z. J., Chiang, H. C., & Hung, C. H. (2024). Fabrication of Zr-based Bulk Metallic Glass from Crystalline Foil Using Laser Foil Printing Process.
[30]Li, Y., Shen, Y., Leu, M. C., & Tsai, H. L. (2018). Building Zr-based metallic glass part on Ti-6Al-4V substrate by laser-foil-printing additive manufacturing. Acta Materialia, 144, 810-821.
[31]Li, Y., Shen, Y., Hung, C. H., Leu, M. C., & Tsai, H. L. (2018). Additive manufacturing of Zr-based metallic glass structures on 304 stainless steel substrates via V/Ti/Zr intermediate layers. Materials Science and Engineering: A, 729, 185-195.
[32]Everton, S. K., Hirsch, M., Stravroulakis, P., Leach, R. K., & Clare, A. T. (2016). Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Materials & Design, 95, 431-445.
[33]Vallabh, C. K. P., & Zhao, X. (2021). Single-camera two-wavelength imaging pyrometry for melt pool temperature measurement and monitoring in laser powder bed fusion based additive manufacturing. arXiv preprint arXiv:2109.07472.
[34]Moshiri, M., Pedersen, D. B., Tosello, G., & Nadimpalli, V. K. (2023). Performance evaluation of in-situ near-infrared melt pool monitoring during laser powder bed fusion. Virtual and Physical Prototyping, 18(1), e2205387.
[35]Höfflin, D., Sauer, C., Schiffler, A., & Hartmann, J. (2022). Process monitoring using synchronized path infrared thermography in PBF-LB/M. Sensors, 22(16), 5943.
[36]Williams, R. J., Piglione, A., Rønneberg, T., Jones, C., Pham, M. S., Davies, C. M., & Hooper, P. A. (2019). In situ thermography for laser powder bed fusion: Effects of layer temperature on porosity, microstructure and mechanical properties. Additive Manufacturing, 30, 100880.
[37]Myers, A. J., Quirarte, G., Beuth, J. L., & Malen, J. A. (2023). Two-color thermal imaging of the melt pool in powder-blown laser-directed energy deposition. Additive Manufacturing, 78, 103855.
[38]Fisher, B. A., Lane, B., Yeung, H., & Beuth, J. (2018). Toward determining melt pool quality metrics via coaxial monitoring in laser powder bed fusion. Manufacturing letters, 15, 119-121.
[39]Liu, T., Lough, C. S., Sehhat, H., Huang, J., Kinzel, E. C., & Leu, M. C. (2021). In-situ thermographic inspection for laser powder bed fusion.
[40]Wang, R., Standfield, B., Dou, C., Law, A. C., & Kong, Z. J. (2023). Real-time process monitoring and closed-loop control on laser power via a customized laser powder bed fusion platform. Additive Manufacturing, 66, 103449.
[41]Turk, T., Liu, T., Hung, C. H., Billo, R., Park, J., & Leu, M. C. (2025). In-situ thermographic monitoring and numerical simulations of laser-foil-printing additive manufacturing. Virtual and Physical Prototyping, 20(1), e2440609.
[42]Telops, *FAST-IR Family*. Exosens, Apr. 2025. [Online]. Available: https://www.exosens.com/system/files/2025-04/FAST-IR_Family_A4_ENG.pdf
[43]Huang, T. C., Hung, C. H., & Lin, Y. (2024). Residual stress reduction in Ti-6Al-4V parts fabricated by laser-foil-printing process. Optics & Laser Technology, 177, 111157.
[44]Luo, Z., & Zhao, Y. (2018). A survey of finite element analysis of temperature and thermal stress fields in powder bed fusion Additive Manufacturing. Additive Manufacturing, 21, 318-332.
[45]Vora, H. D., Santhanakrishnan, S., Harimkar, S. P., Boetcher, S. K., & Dahotre, N. B. (2013). One-dimensional multipulse laser machining of structural alumina: evolution of surface topography. The International Journal of Advanced Manufacturing Technology, 68(1), 69-83.
[46]Allegheny Technologies Incorporated, *ATI Zircadyne® Zirconium – Zircadyne® 702/705 Zirconium Alloys (Technical Data Sheet)*, Version 1 (Feb. 26, 2012). [Online]Available:https://www.atimaterials.com/Products/Documents/datasheets/zirconium/alloy/zircadyne_702_705_1_1.pdf
[47]Firmetal Group, "Zirconium 702, Zr702, UNS R60702 " Firmetal, 2025. [Online]. Available: https://firmetal.jp/zirconium/zirconium-702.html
[48]Jiang, Q. K., Wang, X., Nie, X. P., Zhang, G. Q., Ma, H., Fecht, H. J., ... & Jiang, J. Z. (2008). Zr–(Cu, Ag)–Al bulk metallic glasses. Acta Materialia, 56(8), 1785-1796.
[49]Yamasaki, M., Kagao, S., & Kawamura, Y. (2005). Thermal diffusivity and conductivity of Zr55Al10Ni5Cu30 bulk metallic glass. Scripta Materialia, 53(1), 63-67.
[50]Milošević, N. D., & Maglić, K. D. (2006). Thermophysical properties of solid phase zirconium at high temperatures. International journal of thermophysics, 27(4), 1140-1159.
[51]Veszelei, M., Andersson, K., Ribbing, C. G., Järrendahl, K., & Arwin, H. (1994). Optical constants and Drude analysis of sputtered zirconium nitride films. Applied optics, 33(10), 1993-2001.
[52]Lyubenova, L., Rangelova, V., Spassova, M., & Spassov, T. (2023). Glass forming ability of Zr-based Zr–Cu–Ni–Al–(Ag) alloys. Journal of Thermal Analysis and Calorimetry, 148(10), 3975-3980.