簡易檢索 / 詳目顯示

研究生: 蔡明璁
Tsai, Ming-Tsung
論文名稱: 以冰晶法製備甲烷水合物及其基本燃燒觀察
Observation on the flame behavior for methane hydrate synthesized by ice seed method
指導教授: 趙怡欽
Chao, Yei-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 80
中文關鍵詞: 甲烷水合物冰晶法孔隙度拉曼光譜燃燒
外文關鍵詞: methane hydrate, ice seed method, porosity, Raman spectrum, combustion
相關次數: 點閱:82下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究成功架設以冰晶法為主的水合物製作設備,可調整合成壓力,升降溫度曲線,以自行生產適合後續研究所需的水合物,並可同步紀錄製程中的壓力與溫度。添加乙醇做催化劑,縮短製程時間,加速實驗的進行。
    嘗試裝填不同孔隙度的冰晶,合成出的水合物樣本也會有不同的孔隙度。實驗發現裝填的孔隙度越大,合成出的水合物孔隙度就越大,以顆粒大小180~250μm的冰晶來說,最大裝填孔隙度約為63.3~66.4%,合成出的水合物孔隙度約為46.62~51.1%;最小孔隙度約為51.8~55.8%,合成出得水合物孔隙度約為40.7~44.9%。
    此外對合成出的水合物做一系列的檢測,如水合指數與甲烷釋放率測定等,結果顯示不同孔隙度的水合物在不同部位其水合指數基本一致,介於6.28~6.6之間(轉化率約為87~91%),樣本整體有均勻之轉化率(轉化率相差在4%以內)。而單位面積與單位體積的甲烷釋放率與面體比有較大的關係,面體比越大,則單位面積與單位體積的甲烷釋放率越快
    最後進行水合物的燃燒觀測,發現相同半徑的水合物,孔隙度越大者可以較快點燃,火焰也較快熄滅。而孔隙度接近的水合物,半徑越小者可以越早點燃,燃燒時間也較短。

    The purpose of this study is to develop a standard procedure for artificially synthesize the methane hydrate with consistent and uniform properties for further observation and experiments of the combustion phenomena of methane hydrate. The synthesis procedure is based on ice-seed method, and adding the ethanol as the catalyst to shorten the processing time, if necessary.

    By packing the ice-seed into different porosity, the synthesized hydrates will also have different porosity. With the larger porosity of the ice-seed, the porosity of the synthesized hydrates will also be greater. In this study, the grain size of the ice-seed is between 180~250μm. The largest packing porosity of ice-seed is between 63.3~66.4%, and the resultant porosity of synthesized hydrate is between 46.62~51.1%. The smallest packing porosity of ice-seed is between 51.8~55.8%, and the porosity of synthesized hydrate is between 40.7~44.9%.

    Experimental results show that the hydration number of methane hydrate samples that synthesized by ice-seed method is between 6.28~6.6, the hydrate samples have a uniform conversion rate between 87~91%. In addition, the mass release rate of methane hydrate sample per unit area or unit volume can be related to the surface/volume ratio of the sample, the larger surface/volume ratio, the faster release rate of methane per unit area or unit volume.

    Finally, the combustion phenomena of methane hydrate samples show that both the larger porosity of the methane hydrate sample with the same radius and the smaller radius of the methane hydrate sample with the same porosity can be ignited earlier with shorter ignition delay time and the flame extinguishes earlier with shorter flame lifespan.

    摘要 I Abstract III 致謝 XI 目錄 XII 表目錄 XVI 圖目錄 XVII 第一章緒論 1 1-1 天然氣水合物儲量與分布 1 1-2 水合物的基本性質 1 1-2-1 水合物結構 2 1-2-2 自保效應 4 第二章文獻回顧與研究動機 5 2-1 自然界水合物的開採方式 5 2-2 人工合成水合物 8 2-2-1 攪拌法 9 2-2-2 鼓泡法 10 2-2-3 噴霧法 10 2-2-4 冰晶法 11 2-2-5 添加沉積物或化學試劑法 12 2-3 水合指數及其檢測方式 13 2-4 以拉曼光譜檢測水合物 14 2-5 水合技術的應用 16 2-6 水合物燃燒研究 17 2-7 研究動機與目的 17 第三章實驗設備與研究方法 19 3-1 實驗設備 19 3-1-1 冰晶製作系統 19 3-1-2 增壓系統 20 3-1-3 高壓釜體 21 3-1-4 升降溫循環水槽 22 3-1-5 溫壓紀錄系統 22 3-1-6 拉曼光譜顯微鏡 23 3-1-7 冰盤 24 3-1-8 精密電子天秤 24 3-2 實驗流程 24 3-2-1 水合物製作流程 24 3-2-2 水合物拉曼光譜檢測流程 25 3-2-3 水合物甲烷釋放率測定 26 3-2-4 水合物燃燒流程 27 第四章結果與討論 28 4-1 以冰晶法製作水合物 28 4-1-1 冰晶製作 28 4-1-2 添加乙醇之合成結果 28 4-1-3 無預冷甲烷氣體 30 4-2 不同冰晶裝填孔隙度對合成後的水合物孔隙度影響 31 4-3 顯微拉曼光譜量測結果 31 4-4 水合物的甲烷釋放率 33 4-5 水合物燃燒 34 第五章結論與未來工作 39 5-1 結論 39 5-2 未來工作 40 參考文獻 42

    [1]Milkov, A.V., “Global estimates of hydrate-bound gas in marine sediments: How much is really out there?”, Earth Sci. Rev., 66:183, 2004
    [2]Kvenvolden, K.A., “Potential effects of gas hydrate on human welfare”, Proc. Natl. Acad. Sci. USA., 96:3420, 1999
    [3] Collett, T. S., “Gas Hydrates as a Future Energy Resource”,Geotimes, 2004
    [4] 鐘三雄, 劉家瑄,“新型態潔淨能源天然氣水合物”,科學發展, 412:6-13, 2007
    [5] 陳柏淳, “天然氣水合物合成實驗研究:冰晶法生長機制及醇類催化效應探討”,國立台灣大學地質科學研究所博士論文
    [6] 樊栓獅, “天然氣水合物儲存與運輸技術”,可再生能源叢書, 2005
    [7] Byk, S.Sh., Formina, V.I.,“Gas Hydrates”, Russian Chemical Review, 37:340-352, 1968
    [8] 鐘三雄, 張碩芳, “甲烷氣水包合物的回顧與展望”, 中央地質調查所彙刊, 2001
    [9] Heriot-Watt University, “Center for gas hydrate research”, Institute of Petroleum Engineering, 2010
    [10] Sloan, E.D., “Fundamental principles and applications of natural gas hydrates”,Nature, 426(6964):353-363, 2003
    [11] Sloan, E. D., Carolyn, A. K., “Clathrate hydrates of natural gases”, CRC PressI Llc., 2008
    [12] Stern, L. A., Circone, S., Kirby, S. H., Durham, W. B., “Anomalous Preservation of Pure Methane Hydrate at 1 atm”, The Journal of Physical Chemistry B, 105(9): 1756-1762, 2001
    [13] Sloan, E.D., “Natural gas hydrate”, Journal Petroleum Technology, 43(12):1414-1417, 1991
    [14] Sloan, E.D., “Clathrate hydrate of natural gas 2nd ed”, New York: Marcel Dekker, 1998
    [15] Collett, T.S., “Natural gas hydrates of the Prudhoe Bay and Kupruk River area,North Slope,Alaska”, AAPG Bulletin, 77(5):793-812, 1993
    [16] Islam, M.R., “A new recovery technique for gas production from Alaskan gas hydrate”, Journal of Petroleum Science and Engineering,11(4):101-106, 1994
    [17] 鄧瑞彬, “天然氣水合物采收技術之研究”,成功大學資源工程學系碩士論文, 2003
    [18] Ohgaki, K., TaKano, K., Sangawe, T.H., “Methane expoitation by carbon dioxide from gas hydrates: Phase equilibria for CO2-CH4 mixed hydrate system”, J. Chem. Eng. Japan, 29(3):478-483, 1996
    [19] Nakano, S., Yamamoto, K.,Ohgaki, K., “Natural gas exploitation by carbon dioxide from gas hydrate field: High-pressure phase equilibrium for an ethane hydrate system”, Proc. Instn. Mech. Engrs, 212:159-163, 1998
    [20] 吳傳芝, 趙克斌, 孫長青, “天然氣水合物開採研究現狀”,地質科技情報, 2008
    [21] Makogon, Y.F., “Hydrates of natural gas”, Tulsa: Penn Well Publishing Company, 1997
    [22] Holder, G.D., Angert, P.F., “Simulation of gas production from a reservoir containing both gas hydrates and free natural gas”, Annual Fall Technical Conference and Exhibition, 1982
    [23] 張志杰, 于興河, 鄭秀娟, “天然氣水合物的開採技術及其應用”,天然氣工業, 25(4):128-130, 2005
    [24] 唐良廣, 馮自平, 李小森, 樊栓獅, “海洋滲漏型天然氣水合物開採的新模式”,能源工程, 2006
    [25] 張俊霞, 任建業, “天然氣水合物研究中的幾個重要問題”,地質科技情報, 2001
    [26] Ward, B.B., Kilpatrick, K.A., Novelli, P.C., “Methane oxidation and methane fluxes in the ocean surface layer and deep anoxic water”, Nature, 327:226-229, 1987
    [27] 劉廣志, “天然氣水合物開發的現狀和商業化的技術關鍵”, 探礦工程, 2:8-10, 2003
    [28] 胡高偉, 張劍, 業渝光, “天然氣勘探-開發-儲運-環境響應研究新進展”,地質科技情報, 2006
    [29] Yamamoto, S., Alcauskas, J.B., Crozier, T.E., “Solubility of methane in distilled water and seawater”, Journal of Chemical & Engineering Data, 21(1): 78-80,1976
    [30] Makogon, Y.F., “Hydrates of natural gas”,PennWell Books, 1981
    [31] Marit Mork, “Formation rate of nature gas hydrate”, Trondheim: Norwegain University of Science and Technology, 2002
    [32] 孫志高, 郭開華, 王如竹, 樊栓獅, “甲烷水合物形成促進技術實驗研究”,工程熱物理學報, 2005
    [33] Hwang, M.J., Wright, D.A., Kapur, A., Holder, G.D., “An experimental study of crystallization and crystal growth of methane hydrates from melting ice”, Journal of inclusion phenomena and molecular recognition in chemistry, 8(1-2): 103-116, 1990
    [34] Xie, Y., Guo, K., Liang, D., Fan, S., Gu, J., “Steady gas hydrate growth along vertical heat transfer tube without stirring”, Chemical Engineering Science, 60(3): 777-786, 2005
    [35] 錢永超, 王樹立, 廉明, “天然氣水合物強化生成技術與方法研究進展”,油氣儲運, 31(10):725-732, 2012
    [36] Marit Monk, Jon, S., Gudmundsson, “Hydrate Formation Rate in Continuous Stirred Tank Reactor: Experimental Results and Bubble-to-Crystal Model”, Proceeding of the Fourth International Conference on Gas Hydrate, 2002
    [37] 林于拉, 唐良廣, 馮自平, 樊栓獅, 李剛, “天然氣水合物快速生成技術研究進展”,化工進展, 24(11), 2005
    [38] Rogers, R., Yevi, G.Y., Swalm, M., “Hydrate for storage of natural gas”, Proceedings of the 2nd NGH, Toulouse, France, 1996
    [39] 楊群芳, 劉道平, 謝應名, “一種噴霧方式製備天然氣水合物的實驗系統”,石油與天然氣化工, 2006
    [40] Stern, L. A., Kirby, S.H., Durham, W.B., “Peculiarities of Methane Clathrate Hydrate Formation and Solid-State Deformation, Including Possible Superheating of Water Ice”, Science 273(5283): 1843-1848, 1996
    [41] Gupta,A., Lachance, J.Sloan, E.D., Koh, C.A., “Measurements of methane hydrate heat of dissociation using high pressure differential scanning calorimetry”, Chemical Engineering Science, 63(24): 5848-5853,2008
    [42] 李金平, 梁德清, 郭開華, “多孔介質中氣體水合物相平衡研究研究進展”,石油與天然氣化工, 33(5):315-319 , 2004
    [43] 孫始財, 業渝光, 劉昌岭, “甲烷水合物在石英砂中生成過程研究”,石油與天然氣化工, 10(2), 2011
    [44] Deugd, R.M., Jager, M.D., Arons, J.S., “Mixed hydrates of methane and water-soluble hydrocarbons modeling of empirical result”, AIChE J, 47:693-704, 2001
    [45] 錢永超, 王樹立, 武玉憲, “天然氣水合物強化生成技術與方法研究進展”,油氣儲運, 31(10):725-732, 2012
    [46] 郝文峰, 侯東明, 袁肇中, “不同組成添加劑對甲烷水合物生成的影響”,瀋陽工程學院學報, 3(2):105-107, 2007
    [47] 祁影霞, 楊光, 湯成偉, 張華, “天然氣水合物合成實驗”低溫工程, 2009
    [48] 鄭新, 樊栓獅, 孫志高, “甲烷水合物儲氣實驗研究”,哈爾濱工業大學學報, 35(2), 2003
    [49] 唐建峰, 李旭光, 李玉星, 畢研軍, 邵云巧, “天然氣水合物穩定性試驗”,天然氣工業, 28(5):125-128, 2008
    [50] 徐鋒, 朱麗華, 吳強, 徐龍君, “甲烷水合物拉曼光譜研究進展”,光譜學與光譜分析, 29(9), 2009
    [51] Sum, A.K., Burruss, R.C., Sloan, E.D., “Measurement of Clathrate Hydrates via Raman Spectroscopy”, The Journal of Physical Chemistry B, 101(38): 7371-7377, 1997
    [52] 劉昌岭, 業渝光, 孟慶國, “顯微激光拉曼光譜測定甲烷水合物的水合指數”,Spectroscopy and Spectral Analysis, 30(4): 963-966
    [53] Yasuda, K., Takeya, S., Sakashita, M., Yamawaki, H., Ohmura, R., “Binary Ethanol−Methane Clathrate Hydrate Formation in the System CH4-C2H5OH-H2O: Confirmation of Structure II Hydrate Formation”, The Journal of Physical Chemistry C, 113(28): 12598-12601, 2009
    [54] 李志遠, “以乙醇蒸氣作為動力學促進劑對甲烷及二氧化碳水合物之影響”,國立台灣大學化學工程學系碩士論文
    [55] 宋琦, 王樹立, 武雪紅, 徐匯君, 韓敬英, “水合物技術應用與展望”,油氣儲運, 28(9): 5-9, 2009
    [56] 胡高偉, 業渝光, 張劍, 劉昌岭, 王家生, “水合物儲運技術新進展”,海洋地質動態, 24(11), 2008
    [57] Toshihisa Ueda, Yuki Nakamura, Ryoji Katsuki, Takeshi Yokomori, Ryo Ohmura, Masahiro Takahashi, Kazuo Uchida, “Combustion Characteristics of Methane Hydrate in a Laminar Boundray Layer”, Energy and Fuel, 23:1445-1449, 2009
    [58] Toshihisa Ueda, Yoshihiro Maruyama, Masaru Joe Fuse, Takeshi Yokomori, Ryo Ohmura, Shigeru Watanabe, Toru Iwasaki, Wataru Iwabuchi, “Experimental investigation of flame spreading over pure methane hydrate in a laminar boundary layer”, Proceeding of Combustion Institute, 34:2131-2138, 2012
    [59] 展靜, 吳青柏, 蔣觀利, “冰顆粒粒徑對冰點以下甲烷水合物自保護效應的影響”,天然氣地球科學, 19(4), 2008

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE