| 研究生: |
黎氏寶玉 Le Thi Bao Ngoc |
|---|---|
| 論文名稱: |
二維 Can-1Tin-3Nb3O3n+1-鈣鈦礦納米片結晶結構中取代B位置應用於太陽能水分解和自旋電子計算之研究 Study of B-Site Substituted Two-Dimensional Can-1Tin-3Nb3O3n+1- Perovskite Nanosheets for Solar Water-Splitting and Spintronic-computing Applications |
| 指導教授: |
蘇彥勳
Su, Yen-Hsun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 尖端材料國際碩士學位學程 International Curriculum for Advanced Materials Program |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 二維鈣鈦礦 、B-site取代 、自旋電子學 、水分解 、小極化子跳躍 |
| 外文關鍵詞: | two-dimensional perovskite, B-site substitution, spintronics, water-splitting, small polaron hopping |
| 相關次數: | 點閱:63 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1. Koytsoumpa, E.I., C. Bergins, and E. Kakaras, The CO2 economy: Review of CO2 capture and reuse technologies. The Journal of Supercritical Fluids, 2018. 132: p. 3-16.
2. Paish, O., Small hydro power: technology and current status. Renewable and Sustainable Energy Reviews, 2002. 6(6): p. 537-556.
3. Liang, S., et al., Electrolytic cell design for electrochemical CO2 reduction. Journal of CO2 Utilization, 2020. 35: p. 90-105.
4. Wei, Y., et al., Enhancement of photocatalytic activity from HCa2TaxNb3−xO10 (x=0, 1), co-intercalated with sulfides particles. Applied Catalysis B: Environmental, 2014. 147: p. 920-928.
5. Joy, J., J. Mathew, and S.C. George, Nanomaterials for photoelectrochemical water splitting – review. International Journal of Hydrogen Energy, 2018. 43(10): p. 4804-4817.
6. Wang, J., et al., 8 - Metal oxide semiconductors for solar water splitting, in Metal Oxides in Energy Technologies, Y. Wu, Editor. 2018, Elsevier. p. 205-249.
7. Wang, G., et al., Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Letters, 2011. 11(7): p. 3026-3033.
8. Ogawa, K., et al., Flux synthesis of layered oxyhalide Bi4NbO8Cl photocatalyst for efficient z-scheme water splitting under visible light. ACS Applied Materials & Interfaces, 2019. 11(6): p. 5642-5650.
9. Dilger, S., M. Trottmann, and S. Pokrant, Scaling up electrodes for photoelectrochemical water splitting: fabrication process and performance of 40 cm2 LaTiO2N photoanodes. ChemSusChem, 2019. 12(9): p. 1931-1938.
10. He, Y., T. Hamann, and D. Wang, Thin film photoelectrodes for solar water splitting. Chem Soc Rev, 2019. 48(7): p. 2182-2215.
11. Gopinath, C.S. and N. Nalajala, A scalable and thin film approach for solar hydrogen generation: a review on enhanced photocatalytic water splitting. Journal of Materials Chemistry A, 2021. 9(3): p. 1353-1371.
12. Ros, C., T. Andreu, and J.R. Morante, Photoelectrochemical water splitting: a road from stable metal oxides to protected thin film solar cells. Journal of Materials Chemistry A, 2020. 8(21): p. 10625-10669.
13. Park, S., et al., Enhanced photocatalytic activity of ultrathin Ba5Nb4O15 two-dimensional nanosheets. ACS Appl Mater Interfaces, 2015. 7(39): p. 21860-7.
14. Ida, S. and T. Ishihara, Recent progress in two-dimensional oxide photocatalysts for water splitting. J Phys Chem Lett, 2014. 5(15): p. 2533-42.
15. Su, T., et al., Role of interfaces in two-dimensional photocatalyst for water splitting. ACS Catalysis, 2018. 8(3): p. 2253-2276.
16. Therese, G.H.A., M. Dinamani, and P. Vishnu Kamath, Electrochemical synthesis of perovskite oxides. Journal of Applied Electrochemistry, 2005. 35(5): p. 459-465.
17. He, H., et al., Perovskite oxides as transparent semiconductors: a review. Nano Converg, 2020. 7(1): p. 32.
18. Zhang, F., et al., Advances in two-dimensional organic–inorganic hybrid perovskites. Energy & Environmental Science, 2020. 13(4): p. 1154-1186.
19. Kim, J.Y., et al., High-efficiency perovskite solar cells. Chem Rev, 2020. 120(15): p. 7867-7918.
20. Goel, P., et al., Perovskite materials as superior and powerful platforms for energy conversion and storage applications. Nano Energy, 2021. 80.
21. Liang, C., et al., Ruddlesden-Popper perovskite for stable solar cells. Energy & Environmental Materials, 2018. 1(4): p. 221-231.
22. Fu, Q., et al., Ultrathin Ruddlesden-Popper perovskite heterojunction for sensitive photodetection. Small, 2019. 15(39): p. e1902890.
23. Liu, P., et al., High-quality Ruddlesden-Popper perovskite film formation for high-performance perovskite solar cells. Adv Mater, 2021. 33(10): p. e2002582.
24. Kato, D., et al., Valence band engineering by a layer insertion to Sillén–Aurivillius perovskite oxyhalides. Chemistry Letters, 2017. 46(8): p. 1083-1085.
25. Poterala, S.F., et al., Mechanistic interpretation of the Aurivillius to perovskite topochemical microcrystal conversion process. Chemistry of Materials, 2010. 22(6): p. 2061-2068.
26. McCabe, E.E., et al., Proper ferroelectricity in the Dion–Jacobson material CsBi2Ti2NbO10: experiment and theory. Chemistry of Materials, 2015. 27(24): p. 8298-8309.
27. Cascos, V.A., et al., Tuning between proper and hybrid-improper mechanisms for polar behavior in CsLn2Ti2NbO10 Dion-Jacobson phases. Chem Mater, 2020. 32(19): p. 8700-8712.
28. Liu, X., et al., Boosted responsivity and tunable spectral response in B‐site substituted 2D Ca2Nb3−xTaxO10 perovskite photodetectors. Advanced Functional Materials, 2021. 31(20).
29. Wang, T., et al., Effect of B-site vacancy on surface chemistry and catalytic performance of Dion–Jacobson phase layered perovskite KCa2Nb3O10. Chemical Engineering Journal, 2014. 244: p. 243-251.
30. Xu, J., et al., Defect tolerance of mixed B-Site organic–inorganic halide perovskites. ACS Energy Letters, 2021: p. 4220-4227.
31. Gopalakrishnan, J., et al., A[Bi3Ti4O13] and A[Bi3PbTi5O16] (A = K, Cs): new n = 4 and n = 5 members of the layered perovskite series, A[A‘n-1BnO3n+1], and their hydrates. Inorganic Chemistry, 1999. 38(12): p. 2802-2806.
32. Maeda, K., et al., Calcium niobate nanosheets prepared by the polymerized complex method as catalytic materials for photochemical hydrogen evolution. Chemistry of Materials, 2009. 21(15): p. 3611-3617.
33. Akbarian‐Tefaghi, S., et al., Rapid exfoliation and surface tailoring of perovskite nanosheets via microwave‐assisted reactions. ChemNanoMat, 2017. 3(8): p. 538-550.
34. Xu, J., Y. Teng, and F. Teng, Effect of surface defect states on valence band and charge separation and transfer efficiency. Sci Rep, 2016. 6: p. 32457.
35. Kulischow, N., C. Ladasiu, and R. Marschall, Layered Dion-Jacobson type niobium oxides for photocatalytic hydrogen production prepared via molten salt synthesis. Catalysis Today, 2017. 287: p. 65-69.
36. Zhu, Y., et al., Oxygen defect engineering in double perovskite oxides for effective water oxidation. Journal of Materials Chemistry A, 2020. 8(21): p. 10957-10965.
37. Nakamura, T., et al., Impact of oxygen defects on electrochemical processes and charge compensation of Li-rich cathode material Li1.2Mn0.6Ni0.2O2−δ. ACS Applied Energy Materials, 2020. 3(10): p. 9703-9713.
38. Jia, W., et al., UV excitation and trapping centers in CaTiO3:Pr3+. Journal of Luminescence, 2006. 119-120: p. 13-18.
39. Nurakhmetov, T.N., et al., Intrinsic emission and electron-hole trapping centers in irradiated Na2SO4. Optik, 2021. 242.
40. Stoneham, A.M., et al., Trapping, self-trapping and the polaron family. Journal of Physics: Condensed Matter, 2007. 19(25).
41. Garcia-Muñoz, P., et al., Ti-substituted LaFeO3 perovskite as photoassisted CWPO catalyst for water treatment. Applied Catalysis B: Environmental, 2019. 248: p. 120-128.
42. Huang, Y., et al., Photocatalytic property of partially substituted Pt-intercalated layered perovskite, ASr2TaxNb3−xO10 (A=K, H; x=0, 1, 1.5, 2 and 3). Solar Energy Materials and Solar Cells, 2011. 95(3): p. 1019-1027.
43. Puebla, J., et al., Spintronic devices for energy-efficient data storage and energy harvesting. Comms. Mater., 2020. 1(1): p. 24.
44. Wolf, S.A., et al., Spintronics: a spin-based electronics vision for the future. Science, 2001. 294(5546): p. 1488-95.
45. Saha, D., et al., Spin-Based semiconductor heterostructure devices. 2011. p. 563-614.
46. Jin, L., et al., Ferromagnetic double perovskite semiconductors with tunable properties. Adv Sci (Weinh), 2022. 9(8): p. e2104319.
47. Shluger, A.L. and A.M. Stoneham, Small polarons in real crystals: concepts and problems. Journal of Physics: Condensed Matter, 1993. 5(19): p. 3049-3086.
48. Rettie, A.J., et al., Unravelling small-polaron transport in metal oxide photoelectrodes. J Phys Chem Lett, 2016. 7(3): p. 471-9.
49. Durán, A., et al., Mechanism of small-polaron formation in the biferroic YCrO3 doped with calcium. Materials Chemistry and Physics, 2012. 133(2-3): p. 1011-1017.
50. Shoko, E., M.F. Smith, and R.H. McKenzie, Charge distribution and transport properties in reduced ceria phases: A review. Journal of Physics and Chemistry of Solids, 2011. 72(12): p. 1482-1494.
51. Zhang, W., et al., Unconventional relation between charge transport and photocurrent via boosting small polaron hopping for photoelectrochemical water splitting. ACS Energy Letters, 2018. 3(9): p. 2232-2239.
52. Lu, Y., et al., Effect of strain and tetragonal lattice distortions in doped perovskite manganites. Physical Review B, 2006. 73(18).
53. Martino, M., et al., La0.7Sr0.3MnO3 thin films deposited by pulsed laser ablation for spintronic applications. physica status solidi (a), 2011. 208(8): p. 1817-1820.
54. Ningzhang, Spin-polarization dependent small polaron hopping in manganese perovskites. Modern Physics Letters B, 2011. 17.
55. Fernández-Climent, R., S. Giménez, and M. García-Tecedor, The role of oxygen vacancies in water splitting photoanodes. Sustainable Energy & Fuels, 2020. 4(12): p. 5916-5926.
56. Morgan Chan, Z., et al., Electrochemical trapping of metastable Mn3+ ions for activation of MnO2 oxygen evolution catalysts. Proc Natl Acad Sci U S A, 2018. 115(23): p. E5261-E5268.
57. Watthage, S.C., et al., Chapter 3 - Evolution of perovskite solar cells, in perovskite photovoltaics, S. Thomas and A. Thankappan, Editors. 2018, Academic Press. p. 43-88.
58. Irfan, S., et al., Critical review: bismuth ferrite as an emerging visible light active nanostructured photocatalyst. Journal of Materials Research and Technology, 2019. 8.
59. Reshmi Varma, P.C., Chapter 7 - Low-dimensional perovskites, in Perovskite Photovoltaics, S. Thomas and A. Thankappan, Editors. 2018, Academic Press. p. 197-229.
60. Crystallography and chemistry of perovskites, in Handbook of Magnetism and Advanced Magnetic Materials.
61. Wells, A.F., Structural inorganic chemsitry. 1995: Oxford Science publications.
62. Müller, U., Inorganic structural chemistry. 1993: Wiley & Sons Ltd.
63. Liu, W. and Y. Xu, Spintronic 2D materials: fundamentals and applications. 2019: Elsevier Science.
64. Li, B.-W., et al., Impact of perovskite layer stacking on dielectric responses in KCa2Nan−3NbnO3n+1 (n=3–6) Dion–Jacobson homologous series. Appl. Phys. Lett., 2010. 96(18): p. 182903.
65. Maeda, K. and T.E. Mallouk, Comparison of two- and three-layer restacked Dion-Jacobson phase niobate nanosheets as catalysts for photochemical hydrogen evolution. J. Mater. Chem., 2009. 19(27): p. 4813-4818.
66. Benedek, N.A., et al., Understanding ferroelectricity in layered perovskites: new ideas and insights from theory and experiments. Dalton Trans., 2015. 44(23): p. 10543-10558.
67. Chen, Z., H.N. Dinh, and E. Miller, Photoelectrochemical water splitting: Standards, experimental methods, and protocols. 2013: Springer New York.
68. Chen, H.M., et al., Nano-architecture and material designs for water splitting photoelectrodes. Chem Soc Rev, 2012. 41(17): p. 5654-71.
69. Beld, W.v.d., Microfluidic pump based on arrays of rotating magnetic microspheres, in Electrical Engineering Microsystems and Microelectronics. 2012, University of Twente.
70. Teja, A. and P.Y. Koh, Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog. Cryst. Growth Charact. Mater., 2009. 55: p. 22-45.
71. Wang, Y. and J. Yi, Chapter 4 - Ferromagnetism in two-dimensional materials via doping and defect engineering, in Spintronic 2D Materials, W. Liu and Y. Xu, Editors. 2020, Elsevier. p. 95-124.
72. Spain, E. and A. Venkatanarayanan, Review of physical principles of sensing and types of sensing materials, in Comprehensive Materials Processing. 2014. p. 5-46.
73. Žutić, I., J. Fabian, and S. Das Sarma, Spintronics: fundamentals and applications. Rev. Mod. Phys., 2004. 76(2): p. 323-410.
74. Franke-Arnold, S., Optical angular momentum and atoms. Philos. Trans. A Math. Phys. Eng. Sci., 2017. 375(2087): p. 20150435.
75. Cronin, T., A different view: sensory drive in the polarized-light realm. Curr. Zool., 2018. 64.
76. Natanzon, Y., A. Azulay, and Y. Amouyal, Evaluation of polaron transport in solids from first‐principles. Israel Journal of Chemistry, 2020. 60(8-9): p. 768-786.
77. Stafstrom, S., Electron localization and the transition from adiabatic to nonadiabatic charge transport in organic conductors. Chem Soc Rev, 2010. 39(7): p. 2484-99.
78. Maiti, T., M. Saxena, and P. Roy, Double perovskite (Sr2B'B''O6) oxides for high-temperature thermoelectric power generation—A review. Journal of Materials Research, 2018. 34(1): p. 107-125.
79. First-principles calculations and theory, in Computational thermodynamics of materials, Y. Wang and Z.-K. Liu, Editors. 2016, Cambridge University Press: Cambridge. p. 104-149.
80. Kresse, G. and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 1999. 59(3): p. 1758-1775.
81. Kresse, G. and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 1996. 6(1): p. 15-50.
82. Wagner, C., Exchange energy and potential using the laplacian of the density. 2012, Ball State University: Muncie, Indiana.
83. Kohanoff, J., Electronic structure calculations for solids and molecules: theory and computational methods. 2006: Cambridge University Press.
84. Gruning, M., Density functional theory with improved gradient and orbital dependent functionals. 2003, Vrije Universiteit: Amsterdam.
85. Groß, A., Theoretical surface science: a microscopic perspective. 2009: Springer Berlin Heidelberg.
86. Thamima, M., Y. Andou, and S. Karuppuchamy, Microwave assisted synthesis of perovskite structured BaTiO3 nanospheres via peroxo route for photocatalytic applications. Ceramics International, 2017. 43(1, Part A): p. 556-563.
87. Gao, X., et al., TBAOH assisted synthesis of ultrathin BiOCl nanosheets with enhanced charge separation efficiency for superior photocatalytic activity in carbamazepine degradation. Journal of Colloid and Interface Science, 2020. 570: p. 242-250.
88. Marchwiany, M.E., et al., Surface-related features responsible for cytotoxic behavior of mxenes layered materials predicted with machine learning approach. Materials (Basel), 2020. 13(14).
89. Akbarian-Tefaghi, S. and J.B. Wiley, Microwave-assisted routes for rapid and efficient modification of layered perovskites. Dalton Trans, 2018. 47(9): p. 2917-2924.
90. Aziza, M.R., et al., Dion–Jacobson phase perovskite Ca2Nan–3NbnO3n+1– (n = 4–6) nanosheets as high-κ photovoltaic electrode materials in a solar water-splitting cell. ACS Applied Nano Materials, 2020. 3(7): p. 6367-6375.
91. Lopez-Haro, M., et al., Three-dimensional analysis of Nafion layers in fuel cell electrodes. Nature Communications, 2014. 5(1): p. 5229.
92. Domen, K., et al., A novel series of photocatalysts with an ion-exchangeable layered structure of niobate. Catalysis Letters, 1990. 4: p. 339-343.
93. Ladasiu, C., N. Kulischow, and R. Marschall, Tuning the photocatalytic activity of layered perovskite niobates by controlled ion exchange and hydration. Catalysis Science & Technology, 2022. 12(5): p. 1450-1457.
94. Ebina, Y., et al., Synthesis and in situ X-ray diffraction characterization of two-dimensional perovskite-type oxide colloids with a controlled molecular thickness. Chemistry of Materials, 2012. 24(21): p. 4201-4208.
95. Li, W., et al., Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nature Electronics, 2019. 2(12): p. 563-571.
96. Makula, P., M. Pacia, and W. Macyk, How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-Vis spectra. J Phys Chem Lett, 2018. 9(23): p. 6814-6817.
97. Viezbicke, B.D., et al., Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. physica status solidi (b), 2015. 252(8): p. 1700-1710.
98. Kim, C.H., et al., Capacitive behavior of pentacene-based diodes: quasistatic dielectric constant and dielectric strength. Journal of Applied Physics, 2011. 109(8).
99. Metikos-Hukovic, M., Z. Grubac, and S. Omanovic, Change of n-type to p-type conductivity of the semiconductor passive film on N-steel: enhancement of the pitting corrosion resistance. Journal of the Serbian Chemical Society, 2013. 78(12): p. 2053-2067.
100. Albery, W.J., G.J. O'Shea, and A.L. Smith, Interpretation and use of Mott–Schottky plots at the semiconductor/electrolyte interface. J. Chem. Soc., Faraday Trans., 1996. 92(20): p. 4083-4085.
101. Shao, G., Work function and electron affinity of semiconductors: doping effect and complication due to fermi level pinning. Energy & Environmental Materials, 2021. 4(3): p. 273-276.
102. Pan, S.H., et al., Photocatalytic performance enhancement of two-dimensional Ruddlesden-Popper type perovskite K2La2Ti3O10 by nitrogen-doping. Mater. Res. Express, 2019. 6(7): p. 9.
103. Ferreira, L.G., M. Marques, and L.K. Teles, Slater half-occupation technique revisited: the LDA-1/2 and GGA-1/2 approaches for atomic ionization energies and band gaps in semiconductors. AIP Adv., 2011. 1(3): p. 11.
104. Yuan, J.H., et al., GGA-1/2 self-energy correction for accurate band structure calculations: the case of resistive switching oxides. J. Phys. Commun., 2018. 2(10): p. 16.
105. Barnaś, J., et al., 18 - Thermal spin polarization in bidimensional systems, in Magnetic Nano- and Microwires, M. Vázquez, Editor. 2015, Woodhead Publishing. p. 545-568.
106. López, R. and R. Gómez, Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. Journal of Sol-Gel Science and Technology, 2012. 61(1): p. 1-7.
107. Setvin, M., et al., Direct view at excess electrons in TiO2 rutile and anatase. Physical Review Letters, 2014. 113(8).
108. Carneiro, L.M., et al., Excitation-wavelength-dependent small polaron trapping of photoexcited carriers in α-Fe2O3. Nature Materials, 2017. 16(8): p. 819-825.
109. Bjaoui, N., et al., Effects of Fe2O3 substitution for K2O on the physical properties of 88P2O5–xFe2O3–2CoO–(10−x)K2O glasses. Boletín de la Sociedad Española de Cerámica y Vidrio, 2021. 60(1): p. 13-28.
110. Lany, S., Semiconducting transition metal oxides. J Phys Condens Matter, 2015. 27(28): p. 283203.
111. Guo, E.J., et al., Oxygen diode formed in nickelate heterostructures by chemical potential mismatch. Adv Mater, 2018. 30(15): p. e1705904.
112. Arun Prasad, M. and M.V. Sangaranarayanan, Analysis of the diffusion layer thickness, equivalent circuit and conductance behaviour for reversible electron transfer processes in linear sweep voltammetry. Electrochimica Acta, 2004. 49(3): p. 445-453.
113. Apostol, M., A new approach to the quantized electrical conductance. Physics Letters A, 2008. 372(30): p. 5093-5095.
114. Gueye, M.N., et al., Progress in understanding structure and transport properties of PEDOT-based materials: A critical review. Progress in Materials Science, 2020. 108.
115. Nag, A. and V. Shubha, Oxide Thermoelectric Materials: A Structure–Property Relationship. Journal of Electronic Materials, 2014. 43(4): p. 962-977.
116. Gorham-Bergeron, E. and D. Emin, Phonon-assisted hopping due to interaction with both acoustical and optical phonons. Physical Review B, 1977. 15(8): p. 3667-3680.
117. Roy, P., V. Waghmare, and T. Maiti, Environmentally friendly BaxSr2−xTiFeO6 double perovskite with enhanced thermopower for high temperature thermoelectric power generation. RSC Advances, 2016. 6(60): p. 54636-54643.
118. Imlau, M., H. Badorreck, and C. Merschjann, Optical nonlinearities of small polarons in lithium niobate. Applied Physics Reviews, 2015. 2(4).
校內:2027-07-13公開