簡易檢索 / 詳目顯示

研究生: 陳功哲
Chen, Gong-Zhe
論文名稱: 自動化倉儲系統於橫向負載之疲勞壽命分析
Fatigue Life Analysis of the Automated Material Handling System under Transverse Loading
指導教授: 潘文峰
Pan, Wen-Fung
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系碩士在職專班
Department of Engineering Science (on the job class)
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 52
中文關鍵詞: 自動化倉儲系統結構非線性應力-應變關係有限元素ANSYS分析疲勞壽命
外文關鍵詞: Finite Element ANSYS Analysis, Automated Material Handling System, Fatigue Life, Nonlinear Stress-Strain Relationship
相關次數: 點閱:161下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以有限元素分析軟體ANSYS Workbench分析自動化倉儲系統結構在橫向負載下的靜態力學行為和疲勞壽命,並將模擬結果與實際量測結果進行比對,以確認模型的準確度。本文的研究內容分為兩部分,首先建立自動化倉儲系統結構的分析模型,並考慮重力對變形量的影響,接著進行材料常數與邊界條件的設定,同時本文透過對結構逐漸添加負載,藉此探討系統結構的超載時的塑性行為,並將材料設定為非線性的應力-應變關係。其次,分析系統結構負載1200Kg時的疲勞壽命與使用週期,根據ANSYS分析的結果顯示,最大應力值為70 MPa,遠低於材料的降伏應力245 MPa,故牙叉的變形仍屬於彈性範圍,其安全係數為3.5,此外,透過疲勞循環與平均應力所得出之安全係數為2.36,最後由ANSYS的分析該系統結構的疲勞壽命與疲勞損傷皆為一百萬次循環,證明該系統結構的所承受的橫向負載是安全的。

    In this study the finite element software ANSYS Workbench is used to analyze the response of the automated material handling system (AMHS) under transverse loading. The obtained results from the experiment are used to verify the validity of the finite element model. This research is divided into two parts. Firstly to establish the model of the AMHS, we consider the influence of gravity on the deformation and setup the material constants and boundary conditions. In addition, the behavior of the plastic deformation with overloading is also included. Secondly, the transverse loading of 12 kN is considered, the AMHS is analyzed. According to the analysis results, the maximum equivalent stress is 70 MPa, which is lower than the yield stress. The fork deformation of the structure system is in elastic range. The safety factor based on yield stress of the material is 3.5. In addition, the safety factor of fatigue with mean stress is 2.36. Finally, the results show the fatigue life and damage of the structure both are at 106 cycles. As mentioned above the structure system is safe and reliable.

    目 錄 摘要 I 誌謝 XIV 目錄 XV 表目錄 XVIII 圖目錄 XIX 符號說明 XXI 第一章 緒論 1 1.1 研究背景及動機 1 1.2 研究動機及目的 3 1.3 卡匣放置平台損壞 3 1.4 文獻回顧 4 第二章 基礎理論 7 2.1 前言 7 2.2 塑性基本理論介紹 7 2.2.1. 雙線段動態硬化法則 9 2.2.2. 多線段動態硬化法則 10 2.3 有限元素法概論 12 第三章 自動化倉儲結構有限元素分析 15 3.1 實驗目的 15 3.2 實驗環境與儀器 15 3.2.1 實驗設備介紹 15 3.2.2 有限元素分析步驟 16 3.2.3 實驗方式 17 3.2.4 實驗數據 18 3.3 建立分析模型 19 3.3.1 自動化倉儲系統之牙叉結構 19 3.4 材料機械性質 19 3.4.1 材料參數輸入 19 3.4.2 材料參數-多線段動態硬化法則 20 3.5 網格分割設定 21 3.6 模型建立 22 3.6.1 幾何模型 22 3.7 網格分割設定 24 3.7.1 牙叉本體網格設定 26 3.7.2 第一與第二手臂與基座網格設定 26 3.7.3 模型整體網格品質 27 3.7.4 模型網格收斂 28 3.8 邊界條件與負載設定 30 3.8.1 負載設定-卡匣重量加壓於牙叉本體 30 3.8.2 環境設定-支撐點 30 3.8.3 接觸面設定-牙叉本體與第一手臂 31 3.8.4 接觸面設定-手臂與基座 31 3.8.5 求解條件設定 32 3.9 模擬結果 33 3.9.1 牙叉本體Y軸方向位移量 34 3.9.2 牙叉本體Y軸方向位移量與模擬值比對 35 3.9.3 實驗與模擬結果誤差原因分析 36 3.10 材料非線性分析 36 3.10.1 材料非線性參數設定 36 3.10.2 負載設定 36 3.10.3 模擬結果 37 第四章 自動化倉儲結構疲勞壽命分析 43 4.1 疲勞破壞簡介 43 4.2 循環疲勞 43 4.2.1 低週疲勞 43 4.2.2 高週疲勞 44 4.3 疲勞分析參數設定 44 4.3.1 應力-壽命(S-N)曲線 44 4.3.2 載荷類型 45 4.4 疲勞分析結果 47 4.4.1. 疲勞壽命 47 4.4.2. 疲勞損傷 47 4.4.3. 安全係數 48 第五章 結論 50 參考文獻 51

    [1].J. H. Oh, D. G. Lee and H. S. Kim, Composite robot end effector for manipulating large LCD glass panels, Composite Structures, 47(1-4), pp. 497-506, 1999.
    [2].C. S. Lee, D. G. Lee, J. H. Oh and H. S. Kim, Composite wrist blocks for double arm type robots for handling large LCD glass panels, Composite Structures, 57(1-4), pp. 345-355, 2002.
    [3].Sudhakar A. Kulkarni, Kamal M. Bajoria, Finite element modeling of smart plates /shells using higher order shear deformation theory, Composite Structures, 62(1), pp. 41-50, 2003.
    [4].Y. A. Khalid, F. A. Ali, B. B. Sahari and E. M. A. Saad, Performance of composite I-beams under axial compression and bending load modes, Materials and Design, 26(2), pp. 127-135, 2005.
    [5].H. T. Yalcun, M. Vural and A. Akkus, The FEM analysis of the behavior of a welded column-joist joint under seismic loading. Journal of Materials Processing Technology, 164-165, pp. 1269-1276, 2005.
    [6].M. Costa, U. Sorge and L. Allocca, CFD optimization for GDI spray model tuning and enhancement of engine performance, Advances in Engineering Software, 49(1), pp. 43-53, 2012.
    [7].S. Elhami, M. R. Razfar and M. Farahnakian, Analytical, numerical and experimental study of cutting force during thermally enhanced ultrasonic assisted milling of hardened AISI 4140, International Journal of Mechanical Sciences, 103, pp. 158-171, 2015.
    [8].L. Wang, R. Quant and A. Kolios, Fluid structure interaction modelling of horizontal-axis wind turbine blades based on CFD and FEA. Journal of Wind Engineering & Industrial Aerodynamics, 158, pp. 11-25, 2016.
    [9].S. Li, CFD simulation of dynamic characteristics of a solenoid valve for exhaust gas turbocharger system, Applied Thermal Engineering, 110(5), pp. 213-222, 2017.
    [10].孟慶勳“有限元素分析凹痕圓管在循環負載下之行為”國立成功大學工程科學研究所碩士論文,2015。
    [11].林倩如“有限元素分析局部尖銳凹痕圓管在循環彎曲負載下之行為”國立成功大學工程科學研究所碩士論文,2016。
    [12].鄭伃汝“有限元素分析不同深度凹痕圓管在循環彎曲負載下之凹痕變形”國立成功大學工程科學研究所碩士論文,2016。
    [13].林青穆“薄型QFN封裝於測試環境產生之結構破壞分析與改善”國立成功大學工程科學研究所碩士論文,2019。
    [14].H. H. Lee, Finite Element Simulations with ANSYS Workbench 17, Schroff, 2017.
    [15].Y. H. Lee, W. J. Ji, D. Kwon, Stress measurement of SS400 steel beam using the continuous indentation technique. Experimental Mechanics 44(1), pp. 55–61, 2004.

    下載圖示 校內:2024-07-30公開
    校外:2024-07-30公開
    QR CODE