| 研究生: |
余芳儒 Yu, Fang-Ru |
|---|---|
| 論文名稱: |
椰纖水泥砂漿之電阻抗頻譜初探 Spectroscopic Responses of Coconut Fiber Reinforced Mortars |
| 指導教授: |
侯琮欽
Hou, Tsung-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 交流阻抗法 、電化學阻抗法 、等效電路 、椰子纖維來源/含量/長度 |
| 外文關鍵詞: | EIS, equivalent circuit, coconut fiber, compressive testing |
| 相關次數: | 點閱:108 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
纖維的添加提升水泥基材料的韌性。使用回收或低足跡材料控制纖維加勁水泥基材料對環境的影響。椰子纖維被廣泛研究為纖維加勁材料,具有低成本、可持續性和高拉伸韌性的特性。椰子纖維的品質和特性因地理位置等因素而異。比較不同來源的椰子纖維檢測結果可確定是否存在顯著差異,並確保其應用效果,推動綠色生產的實現。
本研究採用電化學阻抗法(Electrochemical Impedance Spectroscopy, EIS)進行試驗,根據其交流阻抗頻譜圖(Nyquist Plot)上的特徵值,並選用Han等效電路模型擬合出各電路參數值,依據各電路參數所代表之物理意義,探討纖維來源為China、India、Indonesia、Sri Lanka、Taiwan、Vietnam,含量依水泥的重量百分比為0.5%至2.5%,以及長度1、3、5公分對椰纖水泥砂漿內部之微結構所造成的影響,並同步進行抗壓試驗結果與電路參數值作相關分析。
研究結果顯示,無論纖維來源、含量、長度的變化,椰纖水泥砂漿相較於純水泥砂漿的整體電阻率低,這是因為增加纖維與基質間之孔隙率,從而擴大電流傳導路徑。不同來源椰纖水泥砂漿之固相電容皆高於純水泥砂漿,且會隨著椰纖含量上升而略微增加,可能原因為椰子纖維儲存電荷的能力較砂漿高。另外,連通電阻主導纖維水泥砂漿的電學行為,對於不同椰纖來源並沒有顯著影響,纖維含量增加有較明顯變化,纖維長度則有些微影響。此外,連通電阻與抗壓強度呈現良好的相關性,可以用於有效地預測椰子纖維水泥砂漿的水化過程並推測其抗壓強度。且不同來源椰纖水泥砂漿對於連通電阻與抗壓強度相關性並沒有顯著差異,因此證實椰子纖維水泥砂漿的通用性。另外,椰纖水泥砂漿之擴散阻抗係數較純水泥砂漿低,原因為纖維的添加可以增加水泥基材料的孔隙率和孔隙連通性,從而提高離子擴散效應。
Coconut fiber has been widely studied as a fiber reinforcement material due to its low cost, sustainability, and high tensile toughness. In this study, electrochemical impedance spectroscopy (EIS) was employed to analyze the Nyquist Plot and fit the electrical parameters of the Han’s equivalent circuit model. The effects of changing fiber source, content, and length on the microstructure of coconut fiber reinforcement mortar were investigated. Simultaneously, a correlation analysis was performed between the results of compressive strength tests and the electrical parameters. .
The research results show that regardless of variations in fiber sources, content, or length, the addition of coconut fiber reduces the bulk electrical resistivity compared to pure cement mortar. This is because it increases the porosity between the fibers and the matrix, thereby expanding conductive path. The solid-phase capacitance of fiber reinforcement mortars is higher than that of pure cement mortar, possibly due to the higher charge storage capacity of coconut fibers compared to the mortar, and it slightly increases with fiber content. Moreover, the resistance governs the electrical behavior of fiber reinforced mortars and shows no significant variation among different sources of coconut fiber, while fiber content has a more obvious effect and fiber length has a minor influence. Furthermore, there is a well correlation between the resistance and compressive strength. Additionally, different coconut fiber sources do not show significant differences in the correlation between resistance and compressive strength, confirming the universality of coconut fiber reinforcement mortars. Furthermore, the diffusion impedance coefficient of coconut fiber reinforcement mortar is lower than that of pure cement mortar, as the addition of coconut fibers can increase the porosity and connectivity of the cementitious matrix.
[1] Afroughsabet, V., & Ozbakkaloglu, T. (2015). Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers. Construction and Building Materials, 94, 73-82. doi: https://doi.org/10.1016/j.conbuildmat.2015.06.051
[2] Ahmad, W., Farooq, S. H., Usman, M., Khan, M., Ahmad, A., Aslam, F., . . . Sufian, M. (2020). Effect of Coconut Fiber Length and Content on Properties of High Strength Concrete. Materials (Basel), 13(5). doi: 10.3390/ma13051075
[3] Al-Dahawi, A., Sarwary, M. H., Öztürk, O., Yıldırım, G., Akın, A., Şahmaran, M., & Lachemi, M. (2016). Electrical percolation threshold of cementitious composites possessing self-sensing functionality incorporating different carbon-based materials. Smart Materials and Structures, 25(10), 105005. doi: 10.1088/0964-1726/25/10/105005
[4] Ali, B., Qureshi, L. A., & Kurda, R. (2020). Environmental and economic benefits of steel, glass, and polypropylene fiber reinforced cement composite application in jointed plain concrete pavement. Composites Communications, 22, 100437. doi: https://doi.org/10.1016/j.coco.2020.100437
[5] Ali, M. (2011). Coconut fibre: A versatile material and its applications in engineering. Journal of Civil Engineering and Construction Technology Vol. 2(9), 189-197.
[6] Ali, M., Liu, A., Sou, H., & Chouw, N. (2012). Mechanical and dynamic properties of coconut fibre reinforced concrete. Construction and Building Materials, 30, 814-825. doi: https://doi.org/10.1016/j.conbuildmat.2011.12.068
[7] Baweja, D., Roper, H., & Sirvivatnanon, V. (1996). Corrosion of steel in marine concrete: Long-term half-cell potential and resistivity data. Special Publication, 163, 89-110.
[8] Beushausen, H., & Dittmer, T. (2015). The influence of aggregate type on the strength and elastic modulus of high strength concrete. Construction and Building Materials, 74, 132-139. doi: https://doi.org/10.1016/j.conbuildmat.2014.08.055
[9] Chan, R., Santana, M. A., Oda, A. M., Paniguel, R. C., Vieira, L. B., Figueiredo, A. D., & Galobardes, I. (2019). Analysis of potential use of fibre reinforced recycled aggregate concrete for sustainable pavements. Journal of Cleaner Production, 218, 183-191. doi: https://doi.org/10.1016/j.jclepro.2019.01.221
[10] de la Cruz, J., Segura, I., Pujadas, P., Torrents, J. M., & de la Fuente, A. (2022). Non-destructive test approach for assessing the amount of fibre in polymeric fibre reinforced concrete. Construction and Building Materials, 317, 125964. doi: https://doi.org/10.1016/j.conbuildmat.2021.125964
[11] Dittenber, D. B., & GangaRao, H. V. S. (2012). Critical review of recent publications on use of natural composites in infrastructure. Composites Part A: Applied Science and Manufacturing, 43(8), 1419-1429. doi: https://doi.org/10.1016/j.compositesa.2011.11.019
[12] Dong, B.-q., Qiu, Q.-w., Xiang, J.-q., Huang, C.-j., Xing, F., Han, N.-x., & Lu, Y.-y. (2014). Electrochemical impedance measurement and modeling analysis of the carbonation behavior for cementititous materials. Construction and Building Materials, 54, 558-565. doi: https://doi.org/10.1016/j.conbuildmat.2013.12.100
[13] Dong, B., Gu, Z., Qiu, Q., Liu, Y., Ding, W., Xing, F., & Hong, S. (2018). Electrochemical feature for chloride ion transportation in fly ash blended cementitious materials. Construction and Building Materials, 161, 577-586. doi: https://doi.org/10.1016/j.conbuildmat.2017.11.123
[14] Díaz, B., Guitián, B., Nóvoa, X. R., & Pérez, C. (2020). Analysis of the microstructure of carbon fibre reinforced cement pastes by impedance spectroscopy. Construction and Building Materials, 243, 118207. doi: https://doi.org/10.1016/j.conbuildmat.2020.118207
[15] Fan, S., Li, X., & Li, M. (2018). The effects of damage and self-healing on impedance spectroscopy of strain-hardening cementitious materials. Cement and Concrete Research, 106, 77-90. doi: https://doi.org/10.1016/j.cemconres.2018.01.016
[16] Garmy Instruments. Basics of Electrochemical Impedance Spectroscopy. from https://www.gamry.com/application-notes/EIS/basics-of-electrochemical-impedance-spectroscopy/
[17] Gu, P., Xie, P., & Beaudoin, J. J. (1993). Microstructural characterization of the transition zone in cement systems by means of A.C. impedance spectroscopy. Cement and Concrete Research, 23(3), 581-591. doi: https://doi.org/10.1016/0008-8846(93)90008-W
[18] Gu, P., Xie, P., Beaudoin, J. J., & Brousseau, R. (1992). AC impedance spectroscopy (I): A new equivalent circuit model for hydrated portland cement paste. Cement and Concrete Research, 22(5), 833-840.
[19] Gu, P., Xie, P., Beaudoin, J. J., & Brousseau, R. (1993). A.C. impedance spectroscopy (II): Microstructural characterization of hydrating cement-silica fume systems. Cement and Concrete Research, 23(1), 157-168. doi: https://doi.org/10.1016/0008-8846(93)90147-2
[20] Gu, P., Xu, Z., Xie, P., & Beaudoin, J. J. (1993). Application of A.C. impedance techniques in studies of porous cementitious materials: (I): Influence of solid phase and pore solution on high frequency resistance. Cement and Concrete Research, 23(3), 531-540. doi: https://doi.org/10.1016/0008-8846(93)90003-R
[21] Gu, P., Xu, Z., Xie, P., & Beaudoin, J. J. (1993). An a.c. impedance spectroscopy study of micro-cracking in cement-based composites during compressive loading. Cement and Concrete Research, 23(3), 675-682. doi: https://doi.org/10.1016/0008-8846(93)90018-5
[22] Han, J., Cai, J., Pan, J., & Sun, Y. (2021). Study on the conductivity of carbon fiber self-sensing high ductility cementitious composite. Journal of Building Engineering, 43, 103125. doi: https://doi.org/10.1016/j.jobe.2021.103125
[23] Hwang, C.-L., Tran, V.-A., Hong, J.-W., & Hsieh, Y.-C. (2016). Effects of short coconut fiber on the mechanical properties, plastic cracking behavior, and impact resistance of cementitious composites. Construction and Building Materials, 127, 984-992. doi: https://doi.org/10.1016/j.conbuildmat.2016.09.118
[24] J. Christensen, B., Coverdale, T., Olson, R., J. Ford, S., Garboczi, E. J., M. Jennings, H., & O. Mason, T. (1994). Impedance Spectroscopy of Hydrating Cement‐Based Materials: Measurement, Interpretation, and Application. Journal of the American Ceramic Society, 77, 2789-2804.
[25] Keddam, M., Takenouti, H., Nóvoa, X. R., Andrade, C., & Alonso, C. (1997). Impedance measurements on cement paste. Cement and Concrete Research, 27(8), 1191-1201. doi: https://doi.org/10.1016/S0008-8846(97)00117-8
[26] Khan, M., & Ali, M. (2018). Effect of super plasticizer on the properties of medium strength concrete prepared with coconut fiber. Construction and Building Materials, 182, 703-715. doi: https://doi.org/10.1016/j.conbuildmat.2018.06.150
[27] Kozłowski, R., & Władyka-Przybylak, M. (2008). Flammability and fire resistance of composites reinforced by natural fibers. Polymers for Advanced Technologies, 19(6), 446-453. doi: https://doi.org/10.1002/pat.1135
[28] Krishna, N. K., Prasanth, M., Gowtham, R., Karthic, S., & Mini, K. M. (2018). Enhancement of properties of concrete using natural fibers. Materials Today: Proceedings, 5(11, Part 3), 23816-23823. doi: https://doi.org/10.1016/j.matpr.2018.10.173
[29] Li, Z., Wang, L., & Wang, X. (2006). Flexural Characteristics of Coir Fiber Reinforced Cementitious Composites. Fibers and Polymers, Vol.7(No.3), 286-294.
[30] Mason, T. O., Campo, M. A., Hixson, A. D., & Woo, L. Y. (2002). Impedance spectroscopy of fiber-reinforced cement composites. Cement and Concrete Composites, 24(5), 457-465. doi: https://doi.org/10.1016/S0958-9465(01)00077-4
[31] McCarter, W. J. (1987). Gel formation during early hydration. Cement and Concrete Research, 17(1), 55-64. doi: https://doi.org/10.1016/0008-8846(87)90058-5
[32] McCarter, W. J., & Brousseau, R. (1990). The A.C. response of hardened cement paste. Cement and Concrete Research, 20(6), 891-900. doi: https://doi.org/10.1016/0008-8846(90)90051-X
[33] McCarter, W. J., Garvin, S., & Bouzid, N. (1988). Impedance measurements on cement paste. Journal of Materials Science Letters, 7(10), 1056-1057. doi: 10.1007/bf00720825
[34] Oleiwi, H., Wang, Y , Xiang, N, Augusthus Nelson, L , Chen, X and Shabalin,. (2018). An experimental study of concrete resistivity and the effects of electrode configuration and current frequency on measurement. Sixth International Conference on Durability of Concrete Structures.
[35] Ping, X., Ping, G., Yan, F., & Beaudoin, J. J. (1994). A.C. impedance phenomena in hydrating cement systems: Origin of the high frequency arc. Cement and Concrete Research, 24(4), 704-706. doi: https://doi.org/10.1016/0008-8846(94)90194-5
[36] Qiu, Q., Gu, Z., Xiang, J., Huang, C., Hong, S., Xing, F., & Dong, B. (2017). Influence of slag incorporation on electrochemical behavior of carbonated cement. Construction and Building Materials, 147, 661-668.
[37] Sagüés, A. A., Kranc, S. C., & Moreno, E. I. (1995). The time-domain response of a corroding system with constant phase angle interfacial component: Application to steel in concrete. Corrosion Science, 37(7), 1097-1113. doi: https://doi.org/10.1016/0010-938X(95)00017-E
[38] Satyanarayana, K. G., Sukumaran, K., Mukherjee, P. S., Pavithran, C., & Pillai, S. G. K. (1990). Natural fibre-polymer composites. Cement and Concrete Composites, 12(2), 117-136. doi: https://doi.org/10.1016/0958-9465(90)90049-4
[39] Tabarelli, A., Garcez, E. O., Nunes, F. M., Cholant, C. M., Scheibler, S. B., & Avellaneda, C. O. (2019). Investigating the Effect of Curing in the Chloride Diffusion Coefficient of Conventional Concrete. Materials Research, 22.
[40] Teng, S., Afroughsabet, V., & Ostertag, C. P. (2018). Flexural behavior and durability properties of high performance hybrid-fiber-reinforced concrete. Construction and Building Materials, 182, 504-515. doi: https://doi.org/10.1016/j.conbuildmat.2018.06.158
[41] Wang, B., Yan, L., & Kasal, B. (2022). A review of coir fibre and coir fibre reinforced cement-based composite materials (2000–2021). Journal of Cleaner Production, 338, 130676. doi: https://doi.org/10.1016/j.jclepro.2022.130676
[42] Wang, W., & Chouw, N. (2017). The behaviour of coconut fibre reinforced concrete (CFRC) under impact loading. Construction and Building Materials, 134, 452-461. doi: https://doi.org/10.1016/j.conbuildmat.2016.12.092
[43] Whiting, D. A. a. M. A. N. (2003). Electrical resistivity of concrete-a literature review. Portland Cemente Association R&D.
[44] Xie, J., Huang, L., Guo, Y., Li, Z., Fang, C., Li, L., & Wang, J. (2018). Experimental study on the compressive and flexural behaviour of recycled aggregate concrete modified with silica fume and fibres. Construction and Building Materials, 178, 612-623. doi: https://doi.org/10.1016/j.conbuildmat.2018.05.136
[45] Zhang, J., Dong, B., Hong, S., Teng, X., Li, G., Li, W., . . . Xing, F. (2019). Investigating the influence of fly ash on the hydration behavior of cement using an electrochemical method. Construction and Building Materials, 222, 41-48. doi: https://doi.org/10.1016/j.conbuildmat.2019.06.046
[46] 阮秋香. (2012). 以交流阻抗法評估混凝土材料之抗壓強度. (碩士), 國立成功大學, 台南市. Retrieved from https://hdl.handle.net/11296/4cx9dc
校內:2028-07-10公開