簡易檢索 / 詳目顯示

研究生: 陳柏佑
Chen, Po-Yu
論文名稱: 探討熱處理對重金屬誘發水稻根部細胞死亡與MAPK活性之影響
Molecular studies of heat shock inhibits heavy metal-induced cell death and MAPK activation in rice roots
指導教授: 黃浩仁
Huang, Hao-jen
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 63
中文關鍵詞: 重金屬水稻熱處理
外文關鍵詞: MAPK, heavy metal, heat
相關次數: 點閱:89下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    生物性和非生物性逆境,如致病物的感染、熱、乾旱、鹽害以及過量的重金屬,會影響植物生長及代謝。植物會發展出耐受性來對抗各種逆境,而交互耐受性是指當生物體發展某種逆境的耐受性時,對其他的逆境也產生相同的耐受性。預先使用適度的熱處理已知可以從重金屬逆境中保護生物細胞,然而目前對熱逆境是利用哪些訊息傳遞分子與重金屬逆境作連結尚未明瞭。因此,本論文將把目標定在尋找出參與在熱所誘導的重金屬耐受性之中的訊息傳遞分子。在我們的研究中,預先使用熱處理水稻根部細胞可以降低由銅所引起的細胞死亡及活性氧化物 (reactive oxygen species, ROS)的產生,若以亞胺環己酮 (cycloheximide),一種蛋白質合成抑制劑做前處理,結果發現會阻礙熱所誘導的保護作用,從這個結果推論出由熱處理所誘導的保護作用必須要重新合成蛋白質。實驗室早期的實驗結果已指出銅會引起MAPK (mitogen-activated protein kinase) 大量活化,除此之外,鎳也能夠大量增加MAPK的活性。然而,我們發現一小時的熱處理能夠抑制銅和鎳所誘發的MAPK活性。另外,在in-vitro 激活脢活性分析中,直接加入純化過的Hsp72就能夠降低銅所誘發的MAPK活性。綜合以上研究結果,我們推論預先的熱處理能夠提高水稻對重金屬的耐受性,而Hsp72對MAPK活性的抑制效果能夠幫助重金屬耐受性的增加,而是否有其他分子參與在交互耐受性的機制中,則有待進一步研究探討。

    Abstract
    Environmental stresses including biotic and abiotic stresses, such as pathogen infection, heat, drought, salinity, and heavy metals, are important factors that affect growth and metabolism of plants. Plants developed tolerances to respond to multiple environmental stresses. Cross tolerance is the phenomenon by which a plant resistance to a stress results in resistance to another form of stress. Pretreatment with nonlethal heat shock is known to protect cells from heavy metal stress. However, very little is known about how heat stress interacts with heavy metal stresses, and which are the signalling components that interrelate the response. The aim of this study was to search for the signaling components involved in heat induced metaltolerance. In our investigation, preheating attenuates copper (Cu) induced cell death and accumulation of reactive oxygen species (ROS) in rice root cells. Pre-treatment of rice roots with protein synthesis inhibitor, cyclohexiamide (CHX) is able to effectively blocked heat shock protection. This result suggests that protection by heat shock was dependent on protein de novo synthesis. Our prior work showed that Cu elicited a remarkable increase in mitogen-activated protein kinase (MAPK) activities. In addition, Ni also induces MAPK activation in rice root cells. Here, we found that MAPKs activities are down regulated in response to Cu and Ni treatment after 1 hour preheating. Moreover, addition of a purified recombinant HSP72 directly down- regulates Cu-induced MAPK activities in in-vitro kinase assay. Thus, we suggest that preheating enhances tolerance to heavy metal stress in rice and inhibitory effect of HSP72 on MAPKs appears to be a contributor to increased metaltolerance. These results provide for some information for further studies on the mechanisms of cross tolerance in plants.

    Contents Acknowledgements………………………………………………………2 Contents…………………………………………………………………..3 List of Figures…………………………………………………………….5 Abbreviation……………………………………………………………..7 Chinese abstract…………………………………………………………..8 Abstract…………………………………………………………………..9 1. Introduction…………………………………………………………..10 1.1 Heat response in plants………………………………………………………11 1.2 Hsp70 family: One of the major classes of chaperone molecules………...12 1.3 Heavy metal stress in plants…………………………………………...….. 13 1.4 Effects of copper (Cu) toxicity……………………………………………....14 1.5 Effects of Nickel (Ni) in plants……………………………………………...15 1.6 Mitogen-activated protein kinase (MAPK) signal transduction pathways……………………………………………………………………..16 1.7 Aim of this study……………………………………………………………..18 2. Material and Methods………………………………………………...19 2.1 Plant materials and treatments……………………………………………...19 2.2 Evaluation of cell death using Evans blue assay…………………………..19 2.3 Detection of ROS in rice roots…………………………………………….....20 2.4 Preparation of protein extracts………………………………………...……20 2.5 In-gel kinase activity assay…………………………………………………...21 2.6 Western blot analysis…………………………………………………….......22 2.7 Identification and expression plasmid construction……………………….23 2.8 Expression and purification of GST fusion proteins………………………23 2.9 Immunopercipiation and In Vitro Kinase Assays……………………….....24 2.10 Statistic analysis………………………………………………………...…..24 3. RESULTS……………………………………………………………26 3.1 The effect of preheating on Cu induced rice root cell death………………..26 3.2 Preheating prevent CuCl2 induce ROS production ………………………...26 3.3 Protection from Cu toxicity by preheating required protein synthesis……27 3.4 Preheating inhibit Cu- and Ni-induced MBP kinases and the phsphorylation of ERK- type MAPKs in rice roots…………………………………………...27 3.5 Time course study of preheating inhibits activation of MAPKs by copper..29 3.6 Molecular cloing and identification of the Oryza sativa heat shock protein 72 (OsHsp72)……………………………………………………………..........29 3.7 Hsp72 down regulate Cu-induced MBP kinase activities…………………..30 4. Discussion…………………………………………………………….31 5. References…………………………………………………………….38 List of Figures Figure 1. The effect of copper on rice root……………………………...51 Figure 2. The heat pretreatment (42℃) significant restrains copper induced rice root cell death…………………………………...52 Figure 3. ROS production in rice roots during copper treatment with or without preheating……………………………………………………………….53 Figure 4. Using protein synthesis inhibitor cyclohexiamide, blocked protective effect of heat shock on Cu-induced cell death………………………...54 Figure 5. Dose-response study of MAPKs activation by Cu and Ni……………55 Figure 6. Heat pretreatment reduces copper and nickel induced MAPKs activities……………………………………..…………………………..56 Figure 7. Time course study of preheating inhibits activation of MAPKs by Cu, and expression of Hsp70…………………..………………………57 Figure 8. Nucleotide derived amino acid sequences and sequence alignment of OsHsp72………………………………………………………………...58 Figure 9. Expression and purification of the recombinant OsHSP72 protein in E. Coli……………………………………………………………………..59 Figure 10. Recombinant Gst-OsHsp72 down regulate Cu-induced MBP kinases……………………….……………………………………….60 Summary……………………………………………………………….61

    5. Reference
    Adler, V., Schaffer, A., Kim, J., Dolan, L., Ronai, Z., 1995. UV Irradiation and Heat Shock Mediate JNK Activation via Alternate Pathways. J. Biol. Chem. 270, 26071-26077.

    Akagawa, H., Mizuno, S., Mizuno, S., 1998. Suppression of thermotolerance development through CHX-induces negative control of stress protein gene expression. J. Biochem. 123, 226-232.

    Baker, C.J., Mock, N.M., 1994. An improved method for monitoring cell death in cell suspension and leaf disc assay using Evan’s blue. Plant Cell Tissue Organ Cult. 39, 7–12.

    Baccouch, S., Chaoui, A., Ferjani, E, (2001) Nickel toxicity induces oxidative damage in Zea mays roots, J. Plant Nutr. 24, 1085–1097.

    Bharti, K., Nover, L., 2002. Heat stress-induced signalling; in Plant signal transduction. Frontiers in molecular biology (eds) D Scheel and C Wasternack (Oxford: Oxford University Press). pp: 74–115.

    Boisl`eve, F., Kerdine-R¨omera, S., Pallardya, M., 2005. Implication of the MAPK pathways in the maturation of human dendritic cells induced by nickel and TNF-α. Toxicology 206, 233-244.

    Boominathan, R., Doran, P.M., (2002) Ni-induced oxidative stress in roots of the Ni hyperaccumulator, Alyssum bertolonii. New Phytol. 156, 205-215

    Bush, G.L., Meyer, D.I., 1996. The refolding activity of the yeast heat shock proteins Ssa1 and Ssa2 defines their role in protein translocation. J. Cell Biol. 191, 627-643.

    Feige, U., Morimoto, R., Yahara, I., Polla, B., 1996. Stress-Inducible Cellular Responses. Birkhauser (eds) Basel.

    Forreiter, C., Nover, L., 1998. Heat induced stress proteins and thr concept of molecular chaperones. J. BioSci. 23, 287-302.

    Gabai, V.L., Meriin, A.B., Mosser, D.D., Caron, A.W., Rits, S., Shifrin, V.I., Sherman, M.Y., 1997. Hsp70 prevents activation of stress kinases. A novel pathway of cellular thermotolerance. J. Biol. Chem. 272, 18033-18037.

    Gaitanaris, G.A., Papavassiliou, A.G., Rubock, P., Silverstein, S.J., Gottesman, M.E., 1990. Renaturation of denatured λ repressor requires heat shock proteins. Cell 61,
    1013–1020.

    Gao, B.C., Biosca, E.A., Craig, L., Greene, E., Eisenberg, E., 1991. Uncoating of coated vesicles by yeast hsp70 proteins. J. Biol. Chem. 266, 19565-19571.

    Genoud, T., Metraux, J.P., 1999. Crosstalk in plant cell signaling: structure and function of the genetic network. Trends Plant Sci. 4, 503–507.

    Gerner, E.W., Schneider, M.J., 1975. Induced thermal tolerance in HeLa cells. Nature 256, 500-502.

    Gomes-Junior, R.A., Moldes, C.A., Delite, F.S., Gratão, P.L., Mazzafera, P., Lea, P.J., Azevedo, R.A., 2006. Nickel elicits a fast antioxidant response in Coffea arabica cells. Plant Physiol. Biochem. 44, 420-429.

    Hall, J.L., 2002. Cellular mechanism for heavy metal detoxification and tolerance. J Exp. Bot. 53, 1–11.

    Herskowitz, I., 1995. MAP kinase pathways in yeast: for mating and more. Cell 80, 187–197.

    Hoshino, N., Kimura, T., Yamaji, A., Ando, T., 1999. Damage to cytoplasmic membrane of Escherichia coli by catechin-copper (II) complexes. Free Radical Bio. Med. 27, 1245-50.

    Hung, J.J., Cheng, T.J., Lai, Y.K., Chang, M.D.T., 1998. Differential activation of p38 mitogen-activated protein kinase and extracellular signal-regulated protein kinases confers cadmium-induced HSP70 expression in 9L rat brain tumor cells. J. Biol. Chem. 273, 31924-31931.

    Jaattela, M., Wissing, D., 1993. Heat-shock proteins protect cells from monocyte cytotoxicity: possible mechanism of self-protection. J Exp. Med. 177, 231-236.

    Jiang, M., Zhang, J., 2002. Involvement of plasma membrane NADPH oxidase in abscisic acid and water stress-induced antioxidant defense in maize leaves. Planta 215, 1022–1030.
    Kampinga, H.H., 1993. Thermotolerance in mammalian cells- Protein denaturation and aggregation, and stress proteins. J. Cell Sci. 104, 11-17.

    Kasprzak, K., 1991. The role of oxidative damage in metal carcinogen city. Chem. Res. Toxicol. 4, 604-615.

    Kawai, M., Uchimiya, H., 2000. Coleoptile senescence in rice (Oryza sativa L.) Ann. Bot-London 86, 405-414.

    Kukkola, E., Rautio, P., Huttunen, S., 2000. Stress indications in copper- and nickel-exposed Scots pine seedlings. Environ. Exp. Bot. 43, 197–210.

    Kyriakis, J.M., Avruch, J., 1996. Protein kinase cascades activated by stress and inflammatory cytokines. Bioessays 18, 567–577.

    Lee, G.J., Pokala, N., Vierling, E., 1995. Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea. J. Biol. Chem. 270, 10432–10438.

    Lee, G.J., Roseman, A.M., Saibil, H.R., Vierling, E., 1997. A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J. 16, 659-671.

    Levitt, J., 1980. Responses of plants to environmental stresses. New York; Academic Press.

    Lewis, T.E., McIntosh, A.W., 1989. Covariation of selected trace elements with binding substrates in ores collected from two contaminated sediments. B. Environ. Contam. Tox. 43, 518–528.

    Li, G.C., Nussenzweig, A., 1996. Stress-Inducible Cellular Responses. Birkhauser (eds) Base, 425-449.

    Lin, C.W., Chang, H.B., Huang, H.J., 2005. Zinc induces mitogen-activated protein kinase activation mediated by reactive oxygen species in rice roots. Plant Physiol. Biochem. 43, 963-968.

    Malinowski, D.P., Belesky, D.P., 2000. Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci. 40, 923–940.

    Morishima, Y., Murphy, J.M., Li, D.P., Sanchez, E.R., Pratt. W.B., 2000. Stepwise assembly of a glucocorticoid receptor hsp90 heterocomplex resolves two sequential ATP-dependent events involving first hsp70 and then hsp90 in opening of the steroid binding pocket. J. Biol. Chem. 275, 18054-18060.

    Mosser, D.D., Caron, A.W., Bourget, L., Denis-Larose, C., Massie, B., 1997. Role of the human heat shock protein hsp70 in protection against stress- induced apoptosis. Mol. Cell Biol. 17, 5317-5327.

    Nakagami, H., Kiegerl, S., Hirt, H., 2004. OMTK1, a novel MAPKKK, channels oxidative stress signaling through direct MAPK interaction. J. Biol. Chem. 279, 26959-26966.

    Nelson, R.J., Ziegelhoffer, T., Nicolet, C., Werner-Washburne., M., Craig, E.A., 1992. The translation machinery and 70 kDa heat shock protein cooperate in protein synthesis. Cell 71, 97–105.

    Nover, L., Scharf, K.D., Neumann, D., 1989. Cytoplasmic heat shock granules are formed from precursor particles and are associated with a specific set of mRNAs. Mol. Cell. Boil. 9, 1298-1308.

    Ouzounidou, G.., Moustakas, M., Karataglis, S., Ciamporova, M., 1995. Responses of maize (Zea mays L.) plants to copper stress--I. Growth, mineral content and ultrastructure of roots. Environ. Exp. Bot. 35, 167-176.

    Pennell, R.L., Lamb, C. 1997. Programmed Cell Death in Plants. Plant Cell 9, 1157-1168.

    Poulik, Z., (1997) The danger of accumulation of nickel in cereals on contaminated soil. Agric. Ecosystem Environ. 63, 25-29.

    Ritossa, F., 1962. A new puffing pattern induced by temperature shock and DNP in drosophila. Experientia 571-573.

    Ritossa, F., 1996. Discovery of the heat shock response. Cell Stress Chaperon 1, 97-98.

    Rouse, J., Cohen, P., Trigon, S., Morange, M., Alonso-Llamazares, A., Zamanillo, D., Hunt, T., Nebreda, A.R., 1994. A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell 78, 1027-1037.

    Samet, J.M., Graves, L.M., Quay, J., Dailey, L.A., Devlin, R.B., Ghio, A.J., Wu, W., Bromberg, P.A., Reed, W., 1998. Activation of MAPKs in human bronchial epithelial cells exposed to metals. Am. J. Physiol. 275, 551–558.

    Scharf, K.D., Hohfeld, I., Nover, L., 1998. Heat stress response and heat stress transcription factors. J. biosciences 23, 313–329.

    Schickler, H., Caspi, H., 1999. Response of antioxidant enzymes to nickel and cadmium stress in hyperaccumulator plants of the genus Alyssum. Physiol. Plantarum 105, 39–44.

    Sheffield, W.P., Shore, G.C., Randall, S.K., 1990. Mitochondrial precursor protein: effects of 70-kilodalton heat shock protein on polypeptide folding, aggregation, and import competence. J. Biol. Chem. 265, 11069–11076.

    Sheline, C.T., Choi, E.H., Kim-Han, J.S., Dugan, L.L., Choi, D.W., 2002. Cofactors of mitochondrial enzymes attenuate copper-induced death in vitro and in vivo. Ann. Neuro. 52, 195-204.

    Shi, Y., Mosser, D.D., Morimoto, R.I., 1998. Molecular chaperones as HSF1-specific transcriptional repressors. Gene Dev. 12: 654–666.

    Sung, Y.D., Vierling, E., Guy, C.L., 2001. Comprehensive expression profile analysis of the arabidopsis Hsp70 gene family. Plant Physiol. 126, 789–800.

    Tissieres, A., Mitchell, K., Tracy, U.M., 1974. Protein synthesis in salivary glands of Drosophila melanogaster: Relation to chromosome puffs. J. Mol. Biol. 84, 389-398.

    Tsai, T.M., Huang, H.J., 2006. Effects of iron excess on cell viability and mitogen-activated protein kinase activation in rice roots. Physiol. Plantarum 127, 583–592.

    Verheij, M.R., Bose, X.H., Lin, B., Yao, W.D., Jarvis, S., Grant, M.J., Birrer, E., Szabo, L.I., Zon, J.M., Kyriakis, A., Haimovitz-Friedman, Z., Kolesnick, R.N., 1996. Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature 380, 75-79.

    Wainwright, S.J., Woolhouse, H.W., 1977. Some physiological aspects of copper and zinc tolerance in Agrostis tenuis Sibth: cell elongation and membrane damage. J. Exp. Bot. 28, 1029–1036.

    Wang, L., Medan, D., Mercer, R., Overmiller, D., Leornard, S., Castranova, V., Shi, X., Ding, M., Huang, C., Rojanasakul, Y., 2003. Vanadium-induced apoptosis and pulmonary inflammation in mice: Role of reactive oxygen species. 195, 99-107.

    Wang, Z., Castresana, M.R., Newman, W.H., 2004. Reactive oxygen species-sensitive p38 MAPK controls thrombin-induced migration of vascular smooth muscle cells. J. Mol. Cell. Cardio.36, 49-56.

    Waters, E.R., Lee, G.J., Vierling, E., 1996. Evolution, structure and function of the small heat shock proteins in plants. J. Exp. Bot. 47, 325-338.

    Witte, C.P., Tiller, S., Isidore, E., Davies, H.V., Taylor, M.A., 2005. Analysis of two alleles of the urease gene from potato: polymorphisms, expression, and extensive alternative splicing of the corresponding mRNA, J. Exp. Bot. 56, 91–99.

    Wu, C., 1995. Heat stress transcription factors. Ann. Rev. Cell Dev. Bi. 11, 441–469.

    Yamamoto, N., Moon, J.H., Tsushida, T., Nagao, A., Terao, J., 1999. Inhibitory effect of quercetin metabolites and their related derivatives on copper ion-induced lipid peroxidation in human low-density lipoprotein. Arch. Biochem. Biophys. 372, 347-354.

    Yeh, C.M., Hung, W.C., Huang, H.J., 2003. Copper treatment activates mitogen-activated protein kinase signalling in rice. Physiol. Plantarum 119. 392-399.

    Yeh, C.M., Chien, P.S., Huang, H.J. 2006. Distinct signalling pathways for induction of MAP kinase activities by cadmium and copper in rice roots. J. Exp. Bot. 58, 659–671.

    Yuasa, T., Ichimura, K., Mizoguchi, T., Shinozaki, K., 2001 Oxidative stress activates ATMPK6, an Arabidopsis homologue of MAP kinase. Plant Cell Physiol. 42, 1012-1016.

    Zhang, S., Klessig, DF., 1997. Salicylic acid activates a 48 kDa MAP kinase in tobacco. Plant Cell 9, 809–824.
    Zhang, X.P., Elofsson, A., Andreu, D., Glaser, E., 1999. Interaction of mitochondrial presequences with DnaK and mitochondrial Hsp70. J. Mol. Biol. 288, 177–190.

    Zhang, S., Liu, Y., Klessig, D.F., 2000. Multiple levels of tobacco WIPK activation during the induction of cell death by fungal elicitins. Plant J. 23, 339-347.

    Zhu, X., Zhao, X., Burkholder, W.F., Gragerov, A., Ogata, C.M., Gottesman, M.E. Hendrickson, W.A., 1996. Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272. 1606–1614.

    下載圖示 校內:立即公開
    校外:2007-07-16公開
    QR CODE