| 研究生: |
洪偉軒 Hung, Wei-Hsuan |
|---|---|
| 論文名稱: |
使用酒精汽油對台灣空氣品質之影響分析 Impact of Ethanol Blended Gasoline on the Ambient Air Quality in Taiwan |
| 指導教授: |
吳義林
Wu, Yee-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 酒精汽油 、Models-3/CMAQ 、臭氧 、臭氧敏感性 |
| 外文關鍵詞: | gasohol, Models-3/CMAQ, ozone, ozone sensitivity analysis |
| 相關次數: | 點閱:82 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究彙整美國環保署及國內之研究結果,對汽油小客車、汽油小貨車及機車使用酒精汽油之尾氣污染物排放係數及尾氣組成分進行計算,進一步參考並修正Taiwan Emission Data System 8.1 (TEDS8.1)內提供之移動源排放量,應用三維空氣品質網格模式Models-3/CMAQ分析使用E3、E5、E10酒精汽油前後對台灣本島地區於2010年4月及10月之空氣品質影響並分析原因。
排放係數彙整結果顯示,TEDS8.1之新車零里程排放係數較文獻量測結果為低,於使用E0汽油之車輛中,TEDS8.1與文獻彙整結果之汽油小客車THC、NOx、CO排放係數比值分別為0.458、0.747、0.485,汽油小貨車分別為0.295、0.505、0.241,機車分別為0.312、0.296、0.345。本研究以上述比值對TEDS8.1之線源網格化排放量進行修正做為E0案例,並以同樣方式計算E3、E5、E10情境之線源排放量進行空氣品質模擬。
模擬結果顯示,原生系污染物NOx、VOC濃度變化較高之區域皆位於交通源排放量高之區域,其變化趨勢與排放量變化趨勢相同,CO則因車種之排放量變化趨勢相反,各測點之濃度變化趨勢主要受鄰近排放網格點的車種組成影響,E3油品情境之全台NOx、VOC、CO濃度平均變化分別為-0.20 ppb、7.03 ppb、0.61 ppb;E5油品情境之全台NOx、VOC、CO濃度平均變化分別為-0.24 ppb、5.28 ppb、0.52 ppb;E10油品情境之全台NOx、VOC、CO濃度平均變化分別為-0.34ppb、0.32 ppb、0.22 ppb;PM2.5的濃度模擬結果顯示,E3、E5之全台平均濃度增量皆為0.00 ug/m3,E10情境則僅0.03 ug/m3;臭氧部分,4月之E3、E5、E10之O3全台平均濃度變化分別為0.11 ppb、0.12 ppb、0.18 ppb,O3-8hr全台平均濃度變化分別為0.10 ppb、0.10 ppb、0.14 ppb,O3max全台濃度變化分別為0.12 ppb、0.10 ppb、0.12 ppb,OT(NO2+O3)全台濃度變化分別為0.03 ppb、-0.01 ppb、-0.04 ppb;10月之E3、E5、E10之O3全台平均濃度變化分別為0.08 ppb、0.09 ppb、0.13 ppb,O3-8hr全台平均濃度變化分別為0.07 ppb、0.06 ppb、0.09 ppb,O3max全台濃度變化分別為0.07 ppb、0.05 ppb、0.04 ppb,OT全台濃度變化分別為-0.01 ppb、-0.05 ppb、-0.10 ppb。
時間與空間分布,本研究以文獻之光化指標界定比值對各測站之臭氧敏感性物種進行判別,其中北部、宜蘭、花東空品區主要為NOx-control,可進一步由敏感性物種之光化學反應解釋OT於該地區之濃度變化主要呈現負值的原因;各空品區之逐時臭氧及NOx的平均濃度變化圖發現兩者間存在相反趨勢關係,臭氧濃度變化之空間分布圖顯示出同樣結果,代表氮氧化物排放量降低伴隨之臭氧與一氧化氮之滴定效應減弱現象為致使臭氧濃度升高的主要原因。
氣象因素影響探討,綜合MCIP及JPROC計算之結果顯示4月之光化反應速率常數約高於10月一成,可能為造成4月臭氧增量濃度較高的原因;風花圖及HYSPLIT前軌跡模擬結果顯示,氣象模擬所得之4、10月風速於高排放源地區差異不大,而高屏空品區因位於台南市區之下風處以及本身擁有較高的前驅物排放量,因此其正午時段之臭氧上升濃度較其他空品區為高。
This study collect and arrange the data by USEPA and domesteic research about the emission factor of using ethanol-blended gasoline in light duty gasoline vehicle (LDGV), light duty gasoline truck, and scooter, then modify the gridded line sources emissions in TEDS8.1 which is used in Models-3/CMAQ to simulate the impact of using E3, E5, E10 gasohol within 2010 April and October in Taiwan. The simulation result shows that average PM2.5 concentration in E3, E5, E10 gasohol scenarios will variate 0.00, 0.00, 0.03 ug/m3 respectively; April’s daily average ozone concentration in E3, E5, E10 scenarios will repectively rise 0.11, 0.12, 0.18 ppb, which October’s result are repectively 0.08 ,0.09, 0.13 ppb; April’s continuous 8 hours average ozone concentration in E3, E5, E10 scenarios will repectively rise 0.10, 0.10, 0.14 ppb, which October’s repectively rise 0.07, 0.06, 0.09 ppb; April’s daily maximum ozone concentration rise respectively 0.12, 0.10, 0.12 ppb, but only 0.07, 0.05, 0.04 ppb in October. The ratio of [H2O2]/[HNO3] indicator shows that Taipei and east area of Taiwan are more likely to be NOx-control region, which implies the different cause in rising ozone concentration. The concentraion average variation in each hour of ozone and NOx implies the main reason in the increasing ozone should be the titration between ozone and NO, however, Kaohsiung and Pintung have much higher hourly ozone increase at noon because of the precursor from Tainan and itself, which can be obsevated by simulation of HYSPLIT forward trajectory.
Al-Hasan, M. (2003). Effect of ethanol–unleaded gasoline blends on engine performance and exhaust emission. Energy Conversion and Management, 44(9), 1547-1561.
Anderson, L. G. (2009). Ethanol fuel use in Brazil: air quality impacts. Energy & Environmental Science, 2(10), 1015-1037.
Bata, R., & Roan, V. (1989). Effects of ethanol and/or methanol in alcohol-gasoline blends on exhaust emissions. Journal of Engineering for Gas Turbines and power, 111(3), 432-438.
Byun, D., & Schere, K. L. (2006). Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system. Applied Mechanics Reviews, 59(2), 51-77.
Carter, W. P. L. (1994). Development of Ozone Reactivity Scales for Volatile Organic Compounds. Air & Waste, 44(7), 881-899.
Carter, W. P. L. (2010). Development of the SAPRC-07 chemical mechanism. Atmospheric Environment, 44(40), 5324-5335.
Chock, D. P., Chang, T. Y., Winkler, S. L., & Nance, B. I. (1999). The impact of an 8h ozone air quality standard on ROG and NO x controls in Southern California. Atmospheric Environment, 33(16), 2471-2485.
Cook, R., Phillips, S., Houyoux, M., Dolwick, P., Mason, R., Yanca, C., . . . Harvey, C. (2011). Air quality impacts of increased use of ethanol under the United States’ Energy Independence and Security Act. Atmospheric environment, 45(40), 7714-7724.
De Gennaro, M., Paffumi, E., Martini, G., Manfredi, U., Rossi, R., Massari, P., & Roasio, R. (2015). Gaseous Emissions from Gasoline-to-CNG/LPG Converted Motorcycles (0148-7191). Retrieved from
Fleming, Z. L., Monks, P. S., Rickard, A. R., Heard, D. E., Bloss, W. J., Seakins, P. W., . . . Morgan, R. (2006). Peroxy radical chemistry and the control of ozone photochemistry at Mace Head, Ireland during the summer of 2002. Atmospheric Chemistry and Physics, 6(8), 2193-2214.
Gaffney, J. S., Marley, N. A., Martin, R. S., Dixon, R. W., Reyes, L. G., & Popp, C. J. (1997). Potential air quality effects of using ethanol-gasoline fuel blends: a field study in Albuquerque, New Mexico. Environmental science & technology, 31(11), 3053-3061.
Ginnebaugh, D. L., & Jacobson, M. Z. (2012). Examining the impacts of ethanol (E85) versus gasoline photochemical production of smog in a fog using near-explicit gas-and aqueous-chemistry mechanisms. Environmental Research Letters, 7(4), 045901.
Ginnebaugh, D. L., Liang, J., & Jacobson, M. Z. (2010). Examining the temperature dependence of ethanol (E85) versus gasoline emissions on air pollution with a largely-explicit chemical mechanism. Atmospheric Environment, 44(9), 1192-1199.
Han, S., Bian, H., Feng, Y., Liu, A., Li, X., Zeng, F., & Zhang, X. (2011). Analysis of the Relationship between O3, NO and NO2 in Tianjin, China. Aerosol Air Qual. Res, 11(2), 128-139.
He, B.-Q., Wang, J.-X., Hao, J.-M., Yan, X.-G., & Xiao, J.-H. (2003). A study on emission characteristics of an EFI engine with ethanol blended gasoline fuels. Atmospheric Environment, 37(7), 949-957.
Ho, J., & Winer, A. M. (1998). Effects of fuel type, driving cycle, and emission status on in-use vehicle exhaust reactivity. Journal of the Air & Waste Management Association, 48(7), 592-603.
Houyoux, M. R., & Vukovich, J. M. (1999). Updates to the Sparse Matrix Operator Kernel Emissions (SMOKE) modeling system and integration with Models-3. The Emission Inventory: Regional Strategies for the Future, 1461.
Hsieh, W.-D., Chen, R.-H., Wu, T.-L., & Lin, T.-H. (2002). Engine performance and pollutant emission of an SI engine using ethanol–gasoline blended fuels. Atmospheric Environment, 36(3), 403-410.
Jacob, D. J., Horowitz, L. W., Munger, J. W., Heikes, B. G., Dickerson, R. R., Artz, R. S., & Keene, W. C. (1995). Seasonal transition from NO x-to hydrocarbon-limited conditions for ozone production over the eastern United States in September.
Jacobson, M. Z. (2007). Effects of ethanol (E85) versus gasoline vehicles on cancer and mortality in the United States. Environmental Science & Technology, 41(11), 4150-4157.
Jia, L.-W., Zhou, W.-L., Shen, M.-Q., Wang, J., & Lin, M.-Q. (2006). The investigation of emission characteristics and carbon deposition over motorcycle monolith catalytic converter using different fuels. Atmospheric Environment, 40(11), 2002-2010.
Keller, A. (1999). Health and environmental assessment of MTBE—The California perspective. Paper presented at the Proceedings of the American Water Works Association Annual Conference.
Knapp, K. T., Stump, F. D., & Tejada, S. B. (1998). The effect of ethanol fuel on the emissions of vehicles over a wide range of temperatures. Journal of the Air & Waste Management Association, 48(7), 646-653.
Koç, M., Sekmen, Y., Topgül, T., & Yücesu, H. S. (2009). The effects of ethanol–unleaded gasoline blends on engine performance and exhaust emissions in a spark-ignition engine. Renewable energy, 34(10), 2101-2106.
Leong, S. T., Muttamara, S., & Laortanakul, P. (2002). Applicability of gasoline containing ethanol as Thailand's alternative fuel to curb toxic VOC pollutants from automobile emission. Atmospheric Environment, 36(21), 3495-3503.
Li, R. (2006). Development of a 3-D Multimedia Regional Fate and Chemical Transport Modelling System for Pesticides: Modifying and Coupling Models-3/CMAQ with PEM: ProQuest.
Lu, C.-H., & Chang, J. (1997). On the indicator-based approach to assess ozone sensitivities to reductions in VOC and NOx emissions. WIT Transactions on Ecology and the Environment, 21.
Masum, B., Masjuki, H., Kalam, M., Fattah, I. R., Palash, S., & Abedin, M. (2013). Effect of ethanol–gasoline blend on NOx emission in SI engine. Renewable and Sustainable Energy Reviews, 24, 209-222.
Monks, P. S. (2005). Gas-phase radical chemistry in the troposphere. Chemical Society Reviews, 34(5), 376-395.
Niven, R. K. (2005). Ethanol in gasoline: environmental impacts and sustainability review article. Renewable and Sustainable Energy Reviews, 9(6), 535-555.
Peng, Y.-P., Chen, K.-S., Wang, H.-K., Lai, C.-H., Lin, M.-H., & Lee, C.-H. (2011). Applying model simulation and photochemical indicators to evaluate ozone sensitivity in southern Taiwan. Journal of Environmental Sciences, 23(5), 790-797.
Peng, Y., Chen, K., Lai, C., Lu, P., & Kao, J. (2006). Concentrations of H 2 O 2 and HNO 3 and O 3–VOC–NOx sensitivity in ambient air in southern Taiwan. Atmospheric Environment, 40(35), 6741-6751.
Penkett, S., Clemitshaw, K., Savage, N., Burgess, R., Cardenas, L., Carpenter, L., . . . Cape, J. (1999). Studies of oxidant production at the Weybourne Atmospheric Observatory in summer and winter conditions. Journal of atmospheric chemistry, 33(2), 111-128.
Penkett, S., Monks, P., Carpenter, L., Clemitshaw, K., Ayers, G., Gillett, R., . . . Meyer, C. (1997). Relationships between ozone photolysis rates and peroxy radical concentrations in clean marine air over the Southern Ocean. Journal of Geophysical Research: Atmospheres, 102(D11), 12805-12817.
Sillman, S. (1995). The use of NO y, H2O2, and HNO3 as indicators for ozone‐NO x‐hydrocarbon sensitivity in urban locations. Journal of Geophysical Research: Atmospheres, 100(D7), 14175-14188.
Sillman, S. (1999). The relation between ozone, NO x and hydrocarbons in urban and polluted rural environments. Atmospheric Environment, 33(12), 1821-1845.
Sillman, S., & He, D. (2002). Some theoretical results concerning O3‐NOx‐VOC chemistry and NOx‐VOC indicators. Journal of Geophysical Research: Atmospheres, 107(D22).
Sillman, S., Logan, J. A., & Wofsy, S. C. (1990). The sensitivity of ozone to nitrogen oxides and hydrocarbons in regional ozone episodes. Journal of Geophysical Research: Atmospheres, 95(D2), 1837-1851.
Subramanian, M., Setia, A., Kanal, P., Pal, N., Nandi, S., & Malhotra, R. (2005). Effect of Alcohol Blended Fuels on the Emissions and Field Performance of Two-Stroke and Four-Stroke Engine Powered Two Wheelers (0148-7191). Retrieved from
Transportation, U. S. E. P. A. O. o., Assessment, A. Q., Division, S., Laboratory, N. R. E., & Council, C. R. (2013). EPAct/V2/E-89: Assessing the Effect of Five Gasoline Properties on Exhaust Emissions from Light-duty Vehicles Certified to Tier-2 Standards: Final Report on Program Design and Data Collection.
Tseng, M.-C., Lin, R.-R., & Liu, F.-L. (2008). Assessment on the impacts of the 3% ethanol gasoline fuel blend on passenger cars and motorcycles in Taiwan (0148-7191). Retrieved from
Whitney, K., & Shoffner, B. (2014). Effect of Gasoline Properties on Exhaust Emissions from Tier 2 Light-Duty Vehicles—Final Report: Phases 4, 5, & 6. Contract, 303, 275-3000.
Wu, C.-W., Chen, R.-H., Pu, J.-Y., & Lin, T.-H. (2004). The influence of air–fuel ratio on engine performance and pollutant emission of an SI engine using ethanol–gasoline-blended fuels. Atmospheric Environment, 38(40), 7093-7100.
Yüksel, F., & Yüksel, B. (2004). The use of ethanol–gasoline blend as a fuel in an SI engine. Renewable energy, 29(7), 1181-1191.
Yarwood, G., Rao, S., Yocke, M., & Whitten, G. (2005). Updates to the carbon bond chemical mechanism: CB05. Final report to the US EPA, RT-0400675, 8.
United States Environmental Protection Agency (2013), Analysis of Data from EPAct Phase 3 (EPAct/V2/E-89), Final report, EPA-420-R-13-002.
王薏婷(2011),噴射引擎機車使用酒精汽油為燃料之氣態污染物排放特徵研究, 成功大學環境工程學系碩士論文。
周欣慧(2008),酒精汽油對不同里程車輛引擎排放氣態污染物影響研究,成功大學環境工程學系碩士論文。
姚永真(2009),汽油成份於四行程機車引擎氣態污染物排放特徵及模式研究, 成功大學環境工程學系博士論文。
柯忠佑(2007),南台灣不同光化指標一致性研究, 成功大學環境工程學系碩士論文。
柯雅琍(2012),四行程噴射引擎新機車使用酒精汽油於四種行車型態之氣態污染物排放特徵研究,成功大學環境工程學系碩士論文。
徐碩亨(2010),以光化測站探討高屏地區 VOCs 貢獻源 及臭氧生成之影響, 成功大學環境工程學系碩士論文。
張安德(2011),以光化網格模式及光化指標長期模擬分析境外傳輸對台灣臭氧之影響,國立雲林科技大學環境與安全衛生工程系碩士班。
張開駿(2010),汽油含氧量及芳香烴含量對四行程機車排放氣態污染物之影響, 成功大學環境工程學系碩士論文。
陳杜甫、張艮輝(2006),臭氧光化指標之定量及其變異研究,雲林科技大學大學環境工程學系碩士論文。
廖琇怡(2005),高雄市臭氧特性與氣象因子之相關性探討, 中山大學環境工程學系碩士論文。
蔡詠安(2002),氣象條件與臭氧事件日相關性之探討: 以高高屏地區為例,中山大學環境工程學系碩士論文。
蔡德明(2006),應用 Models-3/CMAQ 以 PC cluster 研究高速公路網與電廠對南高屏地區臭氧濃度之影響,成功大學環境工程學系博士論文。
吳義林等(2003),高高屏地區空氣污染物三度空間分布之探討, 環保署期末報告, EPA-92-FA11-03-A217。
林清和(2005),高屏空品區臭氧空氣品質不良成因探討與前驅污染物質來源分析,子計畫一:臭氧前驅物排放與氣象因數對於高屏地區臭氧濃度之影響分析,國科會計畫期末報告, NSC 94-EPA-Z-242-001。
賴進興(2005),高屏空品區臭氧空氣品質不良成因探討與前驅物污染物質來源分析─ 子計畫二:高屏都會/工業區臭氧前驅物之排放與成分驗證,國科會計畫期末報告,NSC 94-EPA-Z-242-004。
賴信志(2005),高屏空品區臭氧空氣品質不良成因探討與前驅污染物質來源分析,子計畫三 :高屏地區臭氧污染事件日期間之氣流特性與其對臭氧前驅物傳輸之影響,國科會計畫期末報告,NSC 94-EPA-Z-309-001。
吳義林(2005),高屏空品區臭氧空氣品質不良成因探討與前驅物污染物質來源分析─ 子計畫四: 高屏都會區/工業區臭氧前驅物之影響與臭氧事件日之成因分析,國科會計畫期末報告,NSC 94-EPA-Z-006-003。
中鼎工程顧問公司(2009),空氣污染物排放清冊資料更新管理及排放量空間分佈查詢建置,環保署計畫期末報告,EPA-97-FA11-03-A176。
行政院環保署(2013),檢討空氣污染物排放清冊及排放趨勢與分部查詢更新計畫,環保署計畫期末報告,EPA-102-FA11-03-A075。
行政院環保署(2015),細懸浮微粒(PM2.5)管制策略研擬及減量成效分析,環保署計畫期末報告,EPA-102-FA11-03-A082。
行政院環保署(2015),臺灣細懸浮微粒(PM2.5)成分與形成速率分析,環保署計畫期末報告,EPA-103-FA11-03-A321。
行政院環保署(2014),台灣空氣污染排放量[TEDS8]線源─排放量推估手冊,http://teds.epa.gov.tw/teds8.1/技術手冊/TEDS8.1_線源推估手冊.pdf
行政院環保署(2014),點源網格用排放量-WGS84座標格式,http://teds.epa.gov.tw/TEDS8.1/排放量檔/WGS84/Line2010_TEDS8.1_WGS84.rar
USEPA(2013), EPAct/V2/E-89 database for main fuel matrix (Excel), https://www3.epa.gov/otaq/models/moves/documents/epact-v2-E89-main-matrix-4-13.xlsx
校內:2021-08-17公開