| 研究生: |
朱芳良 Chu, Fang-Liang |
|---|---|
| 論文名稱: |
PPAR-γ在癲癇發作及神經興奮性所扮演的角色 The Role of Peroxisome Proliferator-Activated Receptor-γ (PPAR-γ) in Seizure and Neuronal Excitability |
| 指導教授: |
黃欽威
Huang, Chin-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 臨床醫學研究所 Institute of Clinical Medicine |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 32 |
| 中文關鍵詞: | 癲癇發作 、神經興奮度 、過氧化體增生活化受體 、愛妥糖 、大電導鈣激活鉀通道 |
| 外文關鍵詞: | seizures, neuronal excitability, PPAR-γ, pioglitazone, BKCa channel |
| 相關次數: | 點閱:162 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
癲癇為一種慢性的腦部疾病。百分之七十的病人可以利用抗癲癇藥物控制住病情,但目前仍然有百分之三十的病人無法用藥物控制。因此,發展新的抗癲癇藥物對於患有癲癇的病人是迫切需要的。
過氧化體增生活化受體家族(PPARs family)是第二類型的nucleus receptor,主要的功能為調控細胞分化,發展以及代謝。其中過氧化體增生活化受體γ(PPAR-γ)已經被報告在中樞神經疾病中對於神經具有保護性。在本研究中,我們試圖探討調節過氧化體增生活化受體γ是否會減緩pilocarpine所誘導的癲癇發作以及降低神經的興奮性。
結果發現,在小鼠行為觀察上,給予PPAR-γ親和劑pioglitazone(愛妥糖)會減緩癲癇的嚴重程度。病理切片上,我們發現pioglitazone 減緩pilocarpine所引起神經細胞損傷以及血腦屏障的破壞。。在pilocarpine誘導癲癇發作的情況下,PPAR-γ的缺失會增加老鼠腦部放電的頻率及振幅。此外,在細胞電生理研究的部分發現,在海馬迴神經元中pioglitazone會減少鈉離子電流以及增加BKCa 通道(大電導鈣激活鉀通道)的打開機率與活性。
總結,促進PPAR-γ活性降低動物急性癲癇發作的嚴重程度、急性神經元損傷以及血腦屏障的破壞。PPAR-γ的缺失則會增加腦部放電的程度。在細胞電生理部分發現PPAR-γ會降低海馬迴神經元鈉離子電流以及提高BKCa 通道的打開機率進而調節神經興奮度。
Epilepsy is a chronic brain disorder. Currently, seizures are controllable with antiepileptic drugs (AEDs) in about 70% of cases and approximately 30% of patients are refractory to current therapies. A novel therapy would thus be urgent for patients with epilepsy.
Peroxisome proliferator-activated receptor (PPARs) family is a type II nucleus receptor, it has functions of regulating cellular differentiation, development, and metabolism. To our knowledge, PPAR-γ has been successfully tested for their neuroprotective potential in some central nervous system diseases. We aimed to investigate whether the modulation of PPAR-γ could attenuate pilocarpine-induced seizures and decrease neuronal excitability.
We found that pioglitazone could attenuate pilocarpine-induced seizure severity in mice. Pathologically, pioglitazone significantly attenuated pilocarpine-induced status epilepticus-related hippocampal neuronal loss and blood brain barrier damage. Video-EEG monitoring showed PPAR-γ deficient mice had more frequent spikes during pilocarpine-induced seizure modeling. In addition, with the aid of patch-clamp technology, we found that pioglitazone could decrease sodium current and increase open probability of large conductance Ca2+-activated K+ (BKCa) channels in hippocampal neurons.
In conclusion, promoting PPAR-γ function attenuated seizure severity, acute neuronal loss and BBB damage. Deficiency of PPAR-γ aggravated pilocarpine-induced electrographic hyperexcitability. Pioglitazone could enhance hippocampal BKCa channel activities and thus modulate neuronal excitability.
1. Loscher, W. and D. Schmidt, Epilepsy: perampanel-new promise for refractory epilepsy? Nat Rev Neurol, 2012. 8(12): p. 661-2.
2. Rogawski, M.A. and W. Loscher, The neurobiology of antiepileptic drugs. Nat Rev Neurosci, 2004. 5(7): p. 553-64.
3. Sillanpaa, M. and D. Schmidt, Natural history of treated childhood-onset epilepsy: prospective, long-term population-based study. Brain, 2006. 129(Pt 3): p. 617-24.
4. Loscher, W., et al., New avenues for anti-epileptic drug discovery and development. Nat Rev Drug Discov, 2013. 12(10): p. 757-76.
5. Verhelst, H., et al., Steroids in intractable childhood epilepsy: clinical experience and review of the literature. Seizure, 2005. 14(6): p. 412-21.
6. Ransohoff, R.M., P. Kivisakk, and G. Kidd, Three or more routes for leukocyte migration into the central nervous system. Nat Rev Immunol, 2003. 3(7): p. 569-81.
7. Vezzani, A. and T. Granata, Brain inflammation in epilepsy: experimental and clinical evidence. Epilepsia, 2005. 46(11): p. 1724-43.
8. Vezzani, A., et al., The role of inflammation in epilepsy. Nat Rev Neurol, 2011. 7(1): p. 31-40.
9. Hubner, C.A. and T.J. Jentsch, Ion channel diseases. Hum Mol Genet, 2002. 11(20): p. 2435-45.
10. Lossin, C., et al., Epilepsy-associated dysfunction in the voltage-gated neuronal sodium channel SCN1A. J Neurosci, 2003. 23(36): p. 11289-95.
11. Meisler, M.H. and J.A. Kearney, Sodium channel mutations in epilepsy and other neurological disorders. J Clin Invest, 2005. 115(8): p. 2010-7.
12. N'Gouemo, P., Targeting BK (big potassium) channels in epilepsy. Expert Opin Ther Targets, 2011. 15(11): p. 1283-95.
13. Kersten, S., B. Desvergne, and W. Wahli, Roles of PPARs in health and disease. Nature, 2000. 405(6785): p. 421-4.
14. Tontonoz, P. and B.M. Spiegelman, Fat and beyond: the diverse biology of PPARgamma. Annu Rev Biochem, 2008. 77: p. 289-312.
15. Schlachetzki, J.C. and J. Winkler, The innate immune system in Parkinson's disease: a novel target promoting endogenous neuroregeneration. Neural Regen Res, 2015. 10(5): p. 704-6.
16. Kapadia, R., J.H. Yi, and R. Vemuganti, Mechanisms of anti-inflammatory and neuroprotective actions of PPAR-gamma agonists. Front Biosci, 2008. 13: p. 1813-26.
17. Ricote, M., et al., The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature, 1998. 391(6662): p. 79-82.
18. Bordet, R., et al., PPAR: a new pharmacological target for neuroprotection in stroke and neurodegenerative diseases. Biochem Soc Trans, 2006. 34(Pt 6): p. 1341-6.
19. Sundararajan, S., et al., PPARgamma as a therapeutic target in central nervous system diseases. Neurochem Int, 2006. 49(2): p. 136-44.
20. Moreno, S., S. Farioli-Vecchioli, and M.P. Ceru, Immunolocalization of peroxisome proliferator-activated receptors and retinoid X receptors in the adult rat CNS. Neuroscience, 2004. 123(1): p. 131-45.
21. Dehmer, T., et al., Protection by pioglitazone in the MPTP model of Parkinson's disease correlates with I kappa B alpha induction and block of NF kappa B and iNOS activation. J Neurochem, 2004. 88(2): p. 494-501.
22. Kiaei, M., et al., Peroxisome proliferator-activated receptor-gamma agonist extends survival in transgenic mouse model of amyotrophic lateral sclerosis. Exp Neurol, 2005. 191(2): p. 331-6.
23. Collino, M., et al., Modulation of the oxidative stress and inflammatory response by PPAR-gamma agonists in the hippocampus of rats exposed to cerebral ischemia/reperfusion. Eur J Pharmacol, 2006. 530(1-2): p. 70-80.
24. Sunaga, Y., et al., Troglitazone but not pioglitazone affects ATP-sensitive K(+) channel activity. Eur J Pharmacol, 1999. 381(1): p. 71-6.
25. Asano, M., et al., Troglitazone and pioglitazone attenuate agonist-dependent Ca2+ mobilization and cell proliferation in vascular smooth muscle cells. Br J Pharmacol, 1999. 128(3): p. 673-83.
26. Tsai, Y.S., et al., Hypertension and abnormal fat distribution but not insulin resistance in mice with P465L PPARgamma. J Clin Invest, 2004. 114(2): p. 240-9.
27. Huang, C.W., et al., Diabetic hyperglycemia aggravates seizures and status epilepticus-induced hippocampal damage. Neurotox Res, 2009. 15(1): p. 71-81.
28. Huang, C.W., et al., Characterizing the effects of Eugenol on neuronal ionic currents and hyperexcitability. Psychopharmacology (Berl), 2012. 221(4): p. 575-87.
29. Pathak, H.R., et al., Disrupted dentate granule cell chloride regulation enhances synaptic excitability during development of temporal lobe epilepsy. J Neurosci, 2007. 27(51): p. 14012-22.
30. Ferraro, T.N., et al., Mapping loci for pentylenetetrazol-induced seizure susceptibility in mice. J Neurosci, 1999. 19(16): p. 6733-9.
31. Chang, Y.C., et al., Febrile seizures impair memory and cAMP response-element binding protein activation. Ann Neurol, 2003. 54(6): p. 706-18.
32. Wu, S.N., Y.M. Huang, and Y.K. Liao, Effects of ibandronate sodium, a nitrogen-containing bisphosphonate, on intermediate-conductance calcium-activated potassium channels in osteoclast precursor cells (RAW 264.7). J Membr Biol, 2015. 248(1): p. 103-15.
33. Shibley, H. and B.N. Smith, Pilocarpine-induced status epilepticus results in mossy fiber sprouting and spontaneous seizures in C57BL/6 and CD-1 mice. Epilepsy Res, 2002. 49(2): p. 109-20.
34. Hasegawa, H., H. Takano, and I. Komuro, Therapeutic Implications of PPARgamma in Cardiovascular Diseases. PPAR Res, 2010. 2010.
35. Kiss, E., et al., Peroxisome proliferator-activated receptor (PPAR)gamma can inhibit chronic renal allograft damage. Am J Pathol, 2010. 176(5): p. 2150-62.
36. Heneka, M.T., et al., Acute treatment with the PPARγ agonist pioglitazone and ibuprofen reduces glial inflammation and Aβ1–42 levels in APPV717I transgenic mice. Brain, 2005. 128(6): p. 1442-1453.
37. Landreth, G., et al., PPARgamma agonists as therapeutics for the treatment of Alzheimer's disease. Neurotherapeutics, 2008. 5(3): p. 481-9.
38. Landreth, G.E. and M.T. Heneka, Anti-inflammatory actions of peroxisome proliferator-activated receptor gamma agonists in Alzheimer's disease. Neurobiol Aging, 2001. 22(6): p. 937-44.
39. Abdallah, D.M., Anticonvulsant potential of the peroxisome proliferator-activated receptor gamma agonist pioglitazone in pentylenetetrazole-induced acute seizures and kindling in mice. Brain Res, 2010. 1351: p. 246-53.
40. Adabi Mohazab, R., et al., Possible involvement of PPAR-gamma receptor and nitric oxide pathway in the anticonvulsant effect of acute pioglitazone on pentylenetetrazole-induced seizures in mice. Epilepsy Res, 2012. 101(1-2): p. 28-35.
41. Okada, K., U. Yamashita, and S. Tsuji, Ameliorative effect of pioglitazone on seizure responses in genetically epilepsy-susceptible EL mice. Brain Res, 2006. 1102(1): p. 175-8.
42. Cornford, E.M. and W.H. Oldendorf, Epilepsy and the blood-brain barrier. Adv Neurol, 1986. 44: p. 787-812.
43. Oby, E. and D. Janigro, The blood-brain barrier and epilepsy. Epilepsia, 2006. 47(11): p. 1761-74.
44. Friedman, A. and U. Heinemann, Role of Blood-Brain Barrier Dysfunction in Epileptogenesis, in Jasper's Basic Mechanisms of the Epilepsies, J.L. Noebels, et al., Editors. 2012, National Center for Biotechnology Information (US)
45. Griggs, R.B., et al., Pioglitazone rapidly reduces neuropathic pain through astrocyte and nongenomic PPARgamma mechanisms. Pain, 2015. 156(3): p. 469-82.
46. Chawla, A., et al., PPAR-gamma dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nat Med, 2001. 7(1): p. 48-52.
47. Park, E.J., et al., 15d-PGJ2 and rosiglitazone suppress Janus kinase-STAT inflammatory signaling through induction of suppressor of cytokine signaling 1 (SOCS1) and SOCS3 in glia. J Biol Chem, 2003. 278(17): p. 14747-52.
48. Bricolo, A., et al., Clinical application of compressed spectral array in long-term EEG monitoring of comatose patients. Electroencephalogr Clin Neurophysiol, 1978. 45(2): p. 211-25.
49. Akman, C.I., et al., Seizure detection using digital trend analysis: Factors affecting utility. Epilepsy Res, 2011. 93(1): p. 66-72.
50. Catterall, W.A., Structure and function of voltage-sensitive ion channels. 1988.
51. Bant, J.S. and I.M. Raman, Control of transient, resurgent, and persistent current by open-channel block by Na channel beta4 in cultured cerebellar granule neurons. Proc Natl Acad Sci U S A, 2010. 107(27): p. 12357-62.
52. Pacheco Otalora, L.F., et al., Down-regulation of BK channel expression in the pilocarpine model of temporal lobe epilepsy. Brain Res, 2008. 1200: p. 116-31.
53. Zhang, F., et al., Effects of pioglitazone on calcium channels in vascular smooth muscle. Hypertension, 1994. 24(2): p. 170-175.
54. Plutzky, J., The potential role of peroxisome proliferator-activated receptors on inflammation in type 2 diabetes mellitus and atherosclerosis. Am J Cardiol, 2003. 92(4a): p. 34j-41j.
55. Lewis, J.D., et al., PIoglitazone use and risk of bladder cancer and other common cancers in persons with diabetes. JAMA, 2015. 314(3): p. 265-277.