| 研究生: |
曾煒泰 Tseng, Wei-Tai |
|---|---|
| 論文名稱: |
荔枝小分子寡酚Oligonol減緩老化促進老鼠肌肉萎縮之研究 Oligonol, a Low-Molecular Weight Polyphenol Derived from Lychee, attenuates muscle atrophy in senescence-accelerated mouse prone 8 (SAMP8) mice |
| 指導教授: |
張素瓊
Chang, Sue-Joan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | Oligonol 、肌肉萎縮 、粒線體生合成 、粒線體融合 、細胞自噬 |
| 外文關鍵詞: | SAMP8 mice, Muscle atrophy, Oligonol |
| 相關次數: | 點閱:73 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肌少症是指隨著年齡增長而骨骼肌質量與強度下降的綜合症,不只影響老年人的身體健康與行動能力,還會增加跌倒風險、認知功能障礙並造成死亡。目前臨床預防與延緩肌少症方式為增加運動與攝取營養食品。Oligonol是一種以荔枝果實為原料萃取,經過特殊剪裁製成的寡酚,並與兒茶素形成穩定且容易吸收之結構。本實驗室先前研究證實,oligonol透過調控mTOR/SREBP-1減少高脂飲食小鼠肝臟和骨骼肌組織中脂質含量,改善其胰島素抗性;Oligonol透過抑制轉錄因子NFκB以及調控粒線體生合成,減低糖尿病小鼠發生腎臟損傷之併發症,並可抑制肌肉萎縮基因MuRF1與Atrogin-1,改善糖尿病肌肉萎縮之情形。然而,oligonol對於改善老化相關肌少症的功效仍尚付闕如。本研究利用老化促進小鼠(Senescence-Accelerated Mouse, SAM)來探討oligonol改善老化相關肌少症之功效及其分子機轉。實驗組別分為SAMR1 (SAM resistant 1)、SAMP8 (SAM prone 8)以及SAMP8餵食oligonol (200 mg/kg diet) 8週,測量握力之後犧牲,取小鼠的脛骨前肌與腓腸肌,進行組織切片、蛋白質和RNA分析。結果顯示,40週齡SAMP8小鼠的腓腸肌重量、四肢握力、腓腸肌纖維截面積相較於SAMR1皆顯著下降(p < 0.05),餵食oligonol可以顯著提升SAMP8小鼠腓腸肌重量、四肢握力、腓腸肌纖維截面積,減緩肌肉萎縮。進一步探討分子機制,oligonol透過活化PI3K /AKT /mTOR /p70S6K訊息途徑增加肌肉蛋白合成(protein synthesis),並抑制FoxO1a進入細胞核,降低MuRF1與Atrogin-1基因轉譯,減緩肌肉通過泛素-蛋白酶體 (ubiquitin-proteasome system)所造成的蛋白質降解(protein degradation)。同時oligonol降低Atg13, LC3, p62等自噬作用相關蛋白表達,減緩自噬-溶酶體系統(autophagy-lysosome system)介導的肌肉蛋白降解。
老化過程中會逐漸失去粒線體更新及汰舊的能力並產生大量活性氧(reactive oxygen species, ROS)。本研究發現,40週齡SAMP8小鼠骨骼肌負責調控粒線體生合成與融合/分裂基因相較於SAMR1顯著降低。餵食oligonol可以提高粒線體生合成相關基因(PGC1α、Tfam、Ndufs8)與融合相關基因(Mfn2與Opa1)表達,進而恢復粒線體生合成與融合之能力。先前文獻指出促發炎介質(proinflammatory cytokine)會促使轉錄因子NFĸB進入細胞核,啟動肌肉萎縮基因與發炎基因轉譯。本研究發現餵食oligonol可抑制SAMP8小鼠轉錄因子NFĸB進入細胞核,降低MuRF1與Atrogin-1肌肉萎縮基因轉譯,並降低 IL1α、IL6、MCP-1、TGFβ發炎因子表達,減緩肌肉組織發炎與萎縮。
總結以上結果,oligonol可以增加骨骼肌蛋白質合成並降低蛋白質降解、改善粒線體生合成、融合與細胞自噬,減少發炎介質產生來減緩肌肉萎縮。本研究建議oligonol可作為改善老年人肌肉萎縮之膳食補充品。
The purpose of this study was to examine whether oligonol ameliorates aged-related muscle atrophy in Senescence-accelerated mouse (SAM) prone 8 (SAMP8). Oligonol, a low molecular weight polyphenol derived from lychee, has been known for anti-inflammatory, anti-cancer, anti-diabetic and anti-obesity properties. Sarcopenia is an aging-related symptom with a significant reduction in mass and strength of skeletal muscle. In this study, we investigated the effect of oligonol on aging-related muscle atrophy and its related signaling. SAMP8 and senescence accelerated mouse resistant 1 (SAMR1) are recognized as appropriate models for studying muscle aging. We used SAMR1 as positive control, SAMP8 as negative control and SAMP8 + oligonol as experimental group. Male SAMP8 were fed with regular diet supplemented with 200 mg oligonol /kg diet for eight weeks. Dietary supplement of oligonol for 8 wk led to increase in skeletal muscle mass, grip strength and cross-section area. Oligonol supplementation significantly up-regulated protein synthesis via phosphorylation of mTOR and p70S6K in SAMP8. Oligonol prevented nuclear translocation of NFκB and FoxO1a, thereby suppressing Atrogin-1 and MuRF1 expression. Oligonol reduced inflammatory mediators and inhibited autophagy by decreasing the levels of Atg13, LC3 and p62. Oligonol restored mitochondrial dynamics and biogenesis, which contribute to the inhibiting autophagy evidenced in SAMP8. In conclusions, our results suggest oligonol as a supplement for alleviating sarcopenia evidenced by improving protein synthesis via PI3K/AKT pathway, suppressing protein degradation via ubiquitin-proteasome system, autophagy-lysosome system, mitochondrial dynamics and biogenesis and reducing inflammatory mediators in SAMP8.
1. Álvarez-Cilleros, D., Ramos, S., Goya, L., Martín, M.Á., 2018. Colonic metabolites from flavanols stimulate nitric oxide production in human endothelial cells and protect against oxidative stress-induced toxicity and endothelial dysfunction. Food and Chemical Toxicology 115, 88-97.
2. Andújar, I., Recio, M., Giner, R., Ríos, J., 2012. Cocoa polyphenols and their potential benefits for human health. Oxidative Medicine and Cellular Longevity 2012, 906252.
3. Arkan, M.C., Hevener, A.L., Greten, F.R., Maeda, S., Li, Z.-W., Long, J.M., Wynshaw-Boris, A., Poli, G., Olefsky, J., Karin, M., 2005. IKK-β links inflammation to obesity-induced insulin resistance. Nature Medicine 11, 191.
4. Attaix, D., Ventadour, S., Codran, A., Béchet, D., Taillandier, D., Combaret, L., 2005. The ubiquitin–proteasome system and skeletal muscle wasting. Essays in Biochemistry 41, 173-186.
5. Baldelli, S., Aquilano, K., Ciriolo, M., 2014. PGC-1α buffers ROS-mediated removal of mitochondria during myogenesis. Cell Death & Disease 5, e1515.
6. Bento, C.F., Renna, M., Ghislat, G., Puri, C., Ashkenazi, A., Vicinanza, M., Menzies, F.M., Rubinsztein, D.C., 2016. Mammalian autophagy: how does it work? Annual Review of Biochemistry 85, 685-713.
7. Bodine, S.C., Baehr, L.M., 2014. Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. American Journal of Physiology-Endocrinology and Metabolism 307, E469-E484.
8. Bowen, T.S., Schuler, G., Adams, V., 2015. Skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training. Journal of Cachexia, Sarcopenia and Muscle 6, 197-207.
9. Brault, J.J., Jespersen, J.G., Goldberg, A.L., 2010. Peroxisome proliferator-activated receptor γ coactivator 1α or 1β overexpression inhibits muscle protein degradation, induction of ubiquitin ligases, and disuse atrophy. Journal of Biological Chemistry 285, 19460-19471.
10. Brunet, A., Sweeney, L.B., Sturgill, J.F., Chua, K.F., Greer, P.L., Lin, Y., Tran, H., Ross, S.E., Mostoslavsky, R., Cohen, H.Y., Hu, L.S., Cheng, H.L., Jedrychowski, M.P., Gygi, S.P., Sinclair, D.A., Alt, F.W., Greenberg, M.E., 2004. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303, 2011-2015.
11. Butterfield, D.A., Poon, H.F., 2005. The senescence-accelerated prone mouse (SAMP8): a model of age-related cognitive decline with relevance to alterations of the gene expression and protein abnormalities in Alzheimer's disease. Experimental Gerontology 40, 774-783.
12. Castets, P., Rüegg, M.A., 2013. MTORC1 determines autophagy through ULK1 regulation in skeletal muscle. Autophagy 9, 1435-1437.
13. Chan, M.C., Arany, Z., 2014. The many roles of PGC-1α in muscle—recent developments. Metabolism-Clinical and Experimental 63, 441-451.
14. Chen, S., Zhao, Z., Ke, L., Li, Z., Li, W., Zhang, Z., Zhou, Y., Feng, X., Zhu, W., 2018. Resveratrol improves glucose uptake in insulin-resistant adipocytes via Sirt1. The Journal of Nutritional Biochemistry 55, 209-218.
15. Choi, A.M., Ryter, S.W., Levine, B., 2013. Autophagy in human health and disease. New England Journal of Medicine 368, 651-662.
16. Cicchini, M., Karantza, V., Xia, B., 2015. Molecular pathways: autophagy in cancer—a matter of timing and context. Clinical Cancer Research 21, 498-504.
17. Colby, S.L., Ortman, J.M., 2017. Projections of the size and composition of the US population: 2014 to 2060: Population Estimates and Projections P25-1143.
18. Cruz-Jentoft, A.J., Baeyens, J.P., Bauer, J.M., Boirie, Y., Cederholm, T., Landi, F., Martin, F.C., Michel, J.-P., Rolland, Y., Schneider, S.M., 2010. Sarcopenia: European consensus on definition and diagnosisReport of the European Working Group on Sarcopenia in Older PeopleA. J. Cruz-Gentoft et al. Age and Ageing 39, 412-423.
19. Cui, H., Kong, Y., Zhang, H., 2012. Oxidative stress, mitochondrial dysfunction, and aging. Journal of Signal Transduction 2012, 646354.
20. Derave, W., Eijnde, B.O., Ramaekers, M., Hespel, P., 2005. Soleus muscles of SAMP8 mice provide an accelerated model of skeletal muscle senescence. Experimental Gerontology 40, 562-572.
21. Drummond, M.J., Fry, C.S., Glynn, E.L., Dreyer, H.C., Dhanani, S., Timmerman, K.L., Volpi, E., Rasmussen, B.B., 2009. Rapamycin administration in humans blocks the contraction-induced increase in skeletal muscle protein synthesis. Journal Physiol 587, 1535-1546.
22. Elkina, Y., von Haehling, S., Anker, S.D., Springer, J., 2011. The role of myostatin in muscle wasting: an overview. Journal of Cachexia, Sarcopenia and Muscle 2, 143-151.
23. Ferri, M., Rondini, G., Calabretta, M.M., Michelini, E., Vallini, V., Fava, F., Roda, A., Minnucci, G., Tassoni, A., 2017. White grape pomace extracts, obtained by a sequential enzymatic plus ethanol-based extraction, exert antioxidant, anti-tyrosinase and anti-inflammatory activities. New Biotechnology 39, 51-58.
24. Fujii, H., Sun, B., Nishioka, H., Hirose, A., Aruoma, O.I., 2007. Evaluation of the safety and toxicity of the oligomerized polyphenol Oligonol. Food and Chemical Toxicology 45, 378-387.
25. Fulop, T., Larbi, A., Witkowski, J.M., McElhaney, J., Loeb, M., Mitnitski, A., Pawelec, G., 2010. Aging, frailty and age-related diseases. Biogerontology 11, 547-563.
26. Grimby, G., Saltin, B., 1983. The ageing muscle. Clinical Physiology and Functional Imaging 3, 209-218.
27. Guo, T.-Z., Wei, T., Huang, T.-T., Kingery, W.S., Clark, J.D., 2018. Oxidative stress contributes to fracture/cast-induced inflammation and pain in a rat model of complex regional pain syndrome. The Journal of Pain, S1526-5900(1518)30156-30151.
28. Henchcliffe, C., Beal, M.F., 2008. Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nature Reviews Neurology 4, 600.
29. Hinkelbein, J., Böhm, L., Braunecker, S., Adler, C., De Robertis, E., Cirillo, F., 2017. Decreased Tissue COX5B Expression and Mitochondrial Dysfunction during Sepsis-Induced Kidney Injury in Rats. Oxidative Medicine and Cellular Longevity 2017, 8498510.
30. Huang, J.-L., Qin, M.-C., Zhou, Y., Xu, Z.-H., Yang, S.-m., Zhang, F., Zhong, J., Liang, M.-K., Chen, B., Zhang, W.-Y., 2018. Comprehensive analysis of differentially expressed profiles of Alzheimer’s disease associated circular RNAs in an Alzheimer’s disease mouse model. Aging (Albany NY) 10, 253.
31. Janku, F., McConkey, D.J., Hong, D.S., Kurzrock, R., 2011. Autophagy as a target for anticancer therapy. Nature Reviews Clinical Oncology 8, 528.
32. Jason, S., Cui, W., 2016. Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development 143, 3050-3060.
33. Jiao, J., Demontis, F., 2017. Skeletal muscle autophagy and its role in sarcopenia and organismal aging. Current Opinion in Pharmacology 34, 1-6.
34. Jung, C.H., Ro, S.-H., Cao, J., Otto, N.M., Kim, D.-H., 2010. mTOR regulation of autophagy. FEBS Letters 584, 1287-1295.
35. Kaizuka, T., Mizushima, N., 2016. Atg13 is essential for autophagy and cardiac development in mice. Molecular and Cellular Biology 36, 585-595.
36. Kang, C., Li Ji, L., 2012. Role of PGC‐1α signaling in skeletal muscle health and disease. Annals of the New York Academy of Sciences 1271, 110-117.
37. Katsuragi, Y., Ichimura, Y., Komatsu, M., 2015. p62/SQSTM1 functions as a signaling hub and an autophagy adaptor. The FEBS journal 282, 4672-4678.
38. Kim, T.N., Choi, K.M., 2013. Sarcopenia: definition, epidemiology, and pathophysiology. Journal of Bone Metabolism 20, 1-10.
39. Kitadate, K., Aoyagi, K., Homma, K., 2014. Effect of Lychee Fruit Extract (Oligonol) on Peripheral Circulation, a Pilot Study. Journal of Natural Medicines 6.
40. López-Lluch, G., Irusta, P.M., Navas, P., de Cabo, R., 2008. Mitochondrial biogenesis and healthy aging. Experimental Gerontology 43, 813-819.
41. Lee, N., Shin, M.S., Kang, Y., Park, K., Maeda, T., Nishioka, H., Fujii, H., Kang, I., 2016. Oligonol, a lychee fruit-derived low-molecular form of polyphenol mixture, suppresses inflammatory cytokine production from human monocytes. Human Immunology 77, 512-515.
42. Li, H., Malhotra, S., Kumar, A., 2008. Nuclear factor-kappa B signaling in skeletal muscle atrophy. Journal of Molecular Medicine 86, 1113-1126.
43. Liu, H.-W., Chan, Y.-C., Wei, C.-C., Chen, Y.-A., Wang, M.-F., Chang, S.-J., 2017a. An alternative model for studying age-associated metabolic complications: Senescence-accelerated mouse prone 8. Experimental Gerontology 99, 61-68.
44. Liu, H.-W., Chen, Y.-J., Chang, Y.-C., Chang, S.-J., 2017b. Oligonol, a Low-Molecular Weight Polyphenol Derived from Lychee, Alleviates Muscle Loss in Diabetes by Suppressing Atrogin-1 and MuRF1. Nutrients 9, 1040.
45. Liu, H.-W., Wei, C.-C., Chang, S.-J., 2016a. Low-molecular-weight polyphenols protect kidney damage through suppressing NF-κB and modulating mitochondrial biogenesis in diabetic db/db mice. Food & Function 7, 1941-1949.
46. Liu, H.W., Chan, Y.C., Wei, C.C., Chen, Y.A., Wang, M.F., Chang, S.J., 2017c. An alternative model for studying age-associated metabolic complications: Senescence-accelerated mouse prone 8. Experimental Gerontology 99, 61-68.
47. Liu, H.W., Wei, C.C., Chen, Y.J., Chen, Y.A., Chang, S.J., 2016b. Flavanol-rich lychee fruit extract alleviates diet-induced insulin resistance via suppressing mTOR/SREBP-1 mediated lipogenesis in liver and restoring insulin signaling in skeletal muscle. Molecular Nutrition & Food Research 60, 2288-2296.
48. Liu, H.W., Wei, C.C., Chen, Y.J., Chen, Y.A., Chang, S.J., 2016c. Flavanol‐rich lychee fruit extract alleviates diet‐induced insulin resistance via suppressing mTOR/SREBP‐1 mediated lipogenesis in liver and restoring insulin signaling in skeletal muscle. Molecular Nutrition & Food Research 60, 2288-2296.
49. Liu, Z., Wu, Z., Li, J., Marmalidou, A., Zhang, R., Yu, M., 2017d. Protective effect of resveratrol against light-induced retinal degeneration in aged SAMP8 mice. Oncotarget 8, 65778.
50. Manach, C., Scalbert, A., Morand, C., Rémésy, C., Jiménez, L., 2004. Polyphenols: food sources and bioavailability. The American Journal of Clinical Nutrition 79, 727-747.
51. Martin, G.R., Danner, D.B., Holbrook, N.J., 1993. Aging—causes and defenses. Annual Review of Medicine 44, 419-429.
52. Masiero, E., Agatea, L., Mammucari, C., Blaauw, B., Loro, E., Komatsu, M., Metzger, D., Reggiani, C., Schiaffino, S., Sandri, M., 2009. Autophagy is required to maintain muscle mass. Cell Metabolism 10, 507-515.
53. Meador, B., Mirza, K., Tian, M., Skelding, M., Reaves, L., Edens, N., Tisdale, M., Pereira, S., 2015. The Green Tea Polyphenol Epigallocatechin-3-Gallate (EGCg) Attenuates Skeletal Muscle Atrophy in a Rat Model of Sarcopenia. The Journal of Frailty & Aging 4, 209-215.
54. Mendias, C.L., Gumucio, J.P., Davis, M.E., Bromley, C.W., Davis, C.S., Brooks, S.V., 2012. Transforming growth factor‐beta induces skeletal muscle atrophy and fibrosis through the induction of atrogin‐1 and scleraxis. Muscle & Nerve 45, 55-59.
55. Morgan, M.J., Liu, Z.G., 2011. Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Research 21, 103-115.
56. Morley, J.E., Armbrecht, H.J., Farr, S.A., Kumar, V.B., 2012. The senescence accelerated mouse (SAMP8) as a model for oxidative stress and Alzheimer's disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1822, 650-656.
57. Mourkioti, F., Kratsios, P., Luedde, T., Song, Y.-H., Delafontaine, P., Adami, R., Parente, V., Bottinelli, R., Pasparakis, M., Rosenthal, N., 2006. Targeted ablation of IKK2 improves skeletal muscle strength, maintains mass, and promotes regeneration. The Journal of Clinical Investigation 116, 2945-2954.
58. Mroske, C., Rasmussen, K., Shinde, D.N., Huether, R., Powis, Z., Lu, H.-M., Baxter, R.M., McPherson, E., Tang, S., 2015. Germline activating MTOR mutation arising through gonadal mosaicism in two brothers with megalencephaly and neurodevelopmental abnormalities. BMC Medical Genetics 16, 102.
59. Nishioka, H., Fujii, H., Sun, B., Aruoma, O.I., 2006. Comparative efficacy of oligonol, catechin and (−)-epigallocatechin 3-O-gallate in modulating the potassium bromate-induced renal toxicity in rats. Toxicology 226, 181-187.
60. Osakabe, N., Terao, J., 2018. Possible mechanisms of postprandial physiological alterations following flavan 3-ol ingestion. Nutrition Reviews 76, 174-186.
61. Ottaviani, J.I., Heiss, C., Spencer, J.P., Kelm, M., Schroeter, H., 2018. Recommending flavanols and procyanidins for cardiovascular health: revisited. Molecular Aspects of Medicine, Jun;61:63-75.
62. Owczarek, K., Hrabec, E., Fichna, J., Sosnowska, D., Koziołkiewicz, M., Szymański, J., Lewandowska, U., 2017. Flavanols from Japanese quince (Chaenomeles japonica) fruit suppress expression of cyclooxygenase-2, metalloproteinase-9, and nuclear factor-kappaB in human colon cancer cells. Acta Biochimica Polonica 64, 64(63):567-576.
63. Pandey, K.B., Rizvi, S.I., 2009. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Medicine and Cellular Longevity 2, 270-278.
64. Park, C.H., Lee, J.Y., Kim, M.Y., Shin, S.H., Roh, S.-S., Choi, J.S., Chung, H.Y., Song, Y.-O., Shin, Y.S., Yokozawa, T., 2016. Oligonol, a low-molecular-weight polyphenol derived from lychee fruit, protects the pancreas from apoptosis and proliferation via oxidative stress in streptozotocin-induced diabetic rats. Food & Function 7, 3056-3063.
65. Park, J.-Y., Kim, Y., Im, J.A., Lee, H., 2015. Oligonol suppresses lipid accumulation and improves insulin resistance in a palmitate-induced in HepG2 hepatocytes as a cellular steatosis model. BMC Complementary and Alternative Medicine 15, 185.
66. Proctor, D., Balagopal, P., Nair, K., 1998. Age-related sarcopenia in humans is associated with reduced synthetic rates of specific muscle proteins. The Journal of Nutrition 128, 351S-355S.
67. Rajan, V.R., Mitch, W.E., 2008. Muscle wasting in chronic kidney disease: the role of the ubiquitin proteasome system and its clinical impact. Pediatric Nephrology 23, 527-535.
68. Russo, T.L., Peviani, S.M., Durigan, J.L., Gigo-Benato, D., Delfino, G.B., Salvini, T.F., 2010. Stretching and electrical stimulation reduce the accumulation of MyoD, myostatin and atrogin-1 in denervated rat skeletal muscle. Journal of Muscle Research and Cell Motility 31, 45-57.
69. Sandri, M., Lin, J., Handschin, C., Yang, W., Arany, Z.P., Lecker, S.H., Goldberg, A.L., Spiegelman, B.M., 2006. PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proceedings of the National Academy of Sciences of the United Stated of America 103, 16260-16265.
70. Sandri, M., Sandri, C., Gilbert, A., Skurk, C., Calabria, E., Picard, A., Walsh, K., Schiaffino, S., Lecker, S.H., Goldberg, A.L., 2004. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117, 399-412.
71. Santilli, V., Bernetti, A., Mangone, M., Paoloni, M., 2014. Clinical definition of sarcopenia. Clinical Cases in Mineral and Bone Metabolism 11, 177.
72. Sebastian, D., Sorianello, E., Segales, J., Irazoki, A., Ruiz-Bonilla, V., Sala, D., Planet, E., Berenguer-Llergo, A., Munoz, J.P., Sanchez-Feutrie, M., Plana, N., Hernandez-Alvarez, M.I., Serrano, A.L., Palacin, M., Zorzano, A., 2016. Mfn2 deficiency links age-related sarcopenia and impaired autophagy to activation of an adaptive mitophagy pathway. EMBO Journal 35, 1677-1693.
73. Seo, D.Y., Lee, S.R., Kim, N., Ko, K.S., Rhee, B.D., Han, J., 2016. Age-related changes in skeletal muscle mitochondria: the role of exercise. Integrative Medicine Research 5, 182-186.
74. Sharma, A., Yuen, D., Huet, O., Pickering, R., Stefanovic, N., Bernatchez, P., de Haan, J.B., 2016. Lack of glutathione peroxidase-1 facilitates a pro-inflammatory and activated vascular endothelium. Vascular Pharmacology 79, 32-42.
75. Shawi, F., Perras, C., Severn, M., 2017. Emerging Drugs for Duchenne Muscular Dystrophy 2016-.161.
76. Simioni, C., Zauli, G., Martelli, A.M., Vitale, M., Sacchetti, G., Gonelli, A., Neri, L.M., 2018. Oxidative stress: role of physical exercise and antioxidant nutraceuticals in adulthood and aging. Oncotarget 9, 17181.
77. Stitt, T.N., Drujan, D., Clarke, B.A., Panaro, F., Timofeyva, Y., Kline, W.O., Gonzalez, M., Yancopoulos, G.D., Glass, D.J., 2004. The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Molecular Cell 14, 395-403.
78. Su, C.-Y., Chang, Y.-C., Yang, C.-J., Huang, M.-S., Hsiao, M., 2016. The opposite prognostic effect of NDUFS1 and NDUFS8 in lung cancer reflects the oncojanus role of mitochondrial complex I. Scientific Reports 6, 31357.
79. Takahashi, R., Komiya, Y., Goto, S., 2006. Effect of Dietary Restriction on Learning and Memory Impairment and Histologic Alterations of Brain Stem in Senescence‐Accelerated Mouse (SAM) P8 Strain. Annals of the New York Academy of Sciences 1067, 388-393.
80. Takeda, T., Hosokawa, M., Takeshita, S., Irino, M., Higuchi, K., Matsushita, T., Tomita, Y., Yasuhira, K., Hamamoto, H., Shimizu, K., 1981. A new murine model of accelerated senescence. Mechanisms of Ageing and Development 17, 183-194.
81. Tanida, I., Ueno, T., Kominami, E., 2008. LC3 and Autophagy, Autophagosome and Phagosome. Springer, pp. 77-88.
82. Tezze, C., Romanello, V., Desbats, M.A., Fadini, G.P., Albiero, M., Favaro, G., Ciciliot, S., Soriano, M.E., Morbidoni, V., Cerqua, C., 2017a. Age-associated loss of OPA1 in muscle impacts muscle mass, metabolic homeostasis, systemic inflammation, and epithelial senescence. Cell Metabolism 25, 1374-1389. e1376.
83. Tezze, C., Romanello, V., Desbats, M.A., Fadini, G.P., Albiero, M., Favaro, G., Ciciliot, S., Soriano, M.E., Morbidoni, V., Cerqua, C., Loefler, S., Kern, H., Franceschi, C., Salvioli, S., Conte, M., Blaauw, B., Zampieri, S., Salviati, L., Scorrano, L., Sandri, M., 2017b. Age-Associated Loss of OPA1 in Muscle Impacts Muscle Mass, Metabolic Homeostasis, Systemic Inflammation, and Epithelial Senescence. Cell Metabolism 25, 1374-1389 e1376.
84. Tilstra, J.S., Clauson, C.L., Niedernhofer, L.J., Robbins, P.D., 2011. NF-κB in aging and disease. Aging and Disease 2, 449.
85. Tomobe, K., Fujii, H., Sun, B., Nishioka, H., Aruoma, O.I., 2007. Modulation of infection-induced inflammation and locomotive deficit and longevity in senescence-accelerated mice-prone (SAMP8) model by the oligomerized polyphenol oligonol. Biomedicine & Pharmacotherapy 61, 427-434.
86. Viedt, C., Vogel, J., Athanasiou, T., Shen, W., Orth, S.R., Kübler, W., Kreuzer, J., 2002. Monocyte chemoattractant protein-1 induces proliferation and interleukin-6 production in human smooth muscle cells by differential activation of nuclear factor-κB and activator protein-1. Arteriosclerosis, Thrombosis, and Vascular Biology 22, 914-920.
87. Wasowski, C., Marder, M., 2012. Flavonoids as GABAA receptor ligands: the whole story? Journal of Experimental Pharmacology 4, 9.
88. Wohlgemuth, S.E., Seo, A.Y., Marzetti, E., Lees, H.A., Leeuwenburgh, C., 2010. Skeletal muscle autophagy and apoptosis during aging: effects of calorie restriction and life-long exercise. Experimental Gerontology 45, 138-148.
89. Wu, M., Liu, H., Fannin, J., Katta, A., Wang, Y., Arvapalli, R.K., Paturi, S., Karkala, S.K., Rice, K.M., Blough, E.R., 2010. Acetaminophen improves protein translational signaling in aged skeletal muscle. Rejuvenation Research 13, 571-579.
90. Wurster, C.D., Ludolph, A.C., 2018. Nusinersen for spinal muscular atrophy. SAGE Publications Sage UK: London, England, pp. Vol. 11: 11–13.
91. Yamanishi, R., Yoshigai, E., Okuyama, T., Mori, M., Murase, H., Machida, T., Okumura, T., Nishizawa, M., 2014. The anti-inflammatory effects of flavanol-rich lychee fruit extract in rat hepatocytes. PloS one 9, e93818.
92. Yin, H., Price, F., Rudnicki, M.A., 2013. Satellite cells and the muscle stem cell niche. Physiological Reviews 93, 23-67.
93. Yu, Y., Chu, W., Chai, J., Li, X., Liu, L., Ma, L., 2016. Critical role of miRNAs in mediating skeletal muscle atrophy. Molecular Medicine Reports 13, 1470-1474.
94. Yun, G.A., LeunG, K.S., Siu, P.M.F., Qin, J.H., Chow, S.K.H., Qin, L., Li, C.Y., 2015. Muscle mass, structural and functional investigations of senescence-accelerated mouse P8 (SAMP8). Experimental Animals 64, 425-433.
95. Zhang, N., Chow, S.K.H., Leung, K.S., Lee, H.H., Cheung, W.H., 2017. An animal model of co-existing sarcopenia and osteoporotic fracture in senescence accelerated mouse prone 8 (SAMP8). Experimental Gerontology 97, 1-8.