| 研究生: |
王俊翔 Wang, Chun-Hsiang |
|---|---|
| 論文名稱: |
顳顎關節盤之生物力學探討:三維有限元素分析 Biomechanical of Temporomandibular disc: Finite Element Analysis |
| 指導教授: |
張志涵
Chang, Chih-Han |
| 共同指導教授: |
劉保興
Liu, Pao-Hsing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 顳顎關節 、有限元素 、關節盤 、應力分佈 |
| 外文關鍵詞: | Temporomandibular joint, Finite element, Disc, Stress distribution |
| 相關次數: | 點閱:102 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
顳顎關節(TMJ)是人體中最特殊的滑脫關節,他可以在承受附載下進行旋轉以及平移的運動。顳顎關節運動功能和關節盤退化疾病的已經被研究超過六十年。關節紊亂在臨床上也是常見的疾病,但造成原因目前還不清楚。在顳顎關節盤的破壞和退化中,應力過度集中和伴隨而來的生物力學失衡是一個重要的因素。此外,有關關節盤的文獻主要都集中在二維的描述,過去的文獻資料中缺乏了關節異常所造成的顳顎關節紊亂和關節盤退化以及關節盤的幾何形狀。因此,本研究的目的是構建一個正常運動的顳顎關節三維(3D)有限元素模型,其關節髁及關節盤可以正常旋轉及滑動,並探討由於關節盤的韌帶異常,肌肉張力不平衡或顳顎關節假體置換所造成的生物力學影響。顳顎關節三維有限元模型是根據CT影像和解剖學定義重建,包括上頜骨窩,整個下顎骨,關節盤,韌帶和肌肉。首先我們要進行開口的生物力學分析,然後再進一步分析單邊顳顎關置換手術對於正常邊關節盤的影響。因此,這個研究可以在關節盤的變形,位移和應力分佈上提供臨床治療和顳顎關節研究的參考。
結果發現,顳顎關節盤正常的移動方式跟關節髁有很大的關係,關節髁旋轉及位移會造成關節盤不同的移動現象,關節髁旋轉時,關節盤的移動較小,關節髁滑動時,則會造成關節盤較大的移動。而應立集中的部分則與關節盤和骨頭接觸的部分相符合,關節盤變形較大的地方則是關節盤的上前方及下後方。
Temporomandibular joint (TMJ) is the most special synovial joint corresponding with translation and rotation movements under jaw opening in the human body. Excessive stress concentration and the subsequent biomechanical imbalance on the disc are considered as important factors to cause destructive and degenerative changes of the TMJ. Furthermore, the literatures about the articular disk of the TMJ were mainly focused on two-dimensional investigations. Previous studies in mandibular disc motion in quantity were deficiency to compare with present a three-dimensional (3D) finite element (FE) TMJ model. Therefore, the purpose of this study is to construct a 3D FE TMJ model with normal movements function of rotation and translation in the condylar head and articular disk to understand biomechanical effects of the condyle and articular disc when mouth opening and closing. Furthermore, this study is also to investigate the effects of the normal disc by excessive anterior and posterior positioning of the abnormal disc. The 3D FE TMJ model was reconstructed from CT images, and 3D TMJ model consisted of fossa regions of maxilla, whole mandible, articular disk, ligaments and muscles. Basic TMJ biomechanics with jaw opening and closing will be examined in the FE simulation firstly, and then further to investigate the influences of normal disc by performing unilateral abnormal positioning of the disc. The FE results of this thesis can not only provide an important consequence for changes of shape deformation and stress distribution of the disc but represent the 3D TMJ moving of rotation and translation in the condyle and disc. The influences of the normal disc due to unilateral abnormal disc positioning was evidenced, the dorsal side of the disc under the excessive posterior positioning was detected a significant difference of lateral squeeze effect on the normal disc. In the future study, numerous limitations in this study will be improved for obtaining more accurate and reliable outcomes in the3D FE TMJ model.
1. Detamore, M.S. and K.A. Athanasiou, Structure and function of the temporomandibular joint disc: implications for tissue engineering. J Oral Maxillofac Surg, 2003. 61(4): p. 494-506.
2. LeResche, L., Epidemiology of temporomandibular disorders: implications for the investigation of etiologic factors. Crit Rev Oral Biol Med, 1997. 8(3): p. 291-305.
3. Nickel, J.C., et al., The effect of disc thickness and trauma on disc surface friction in the porcine temporomandibular joint. Arch Oral Biol, 2001. 46(2): p. 155-62.
4. Mori, H., et al., Three-dimensional finite element analysis of cartilaginous tissues in human temporomandibular joint during prolonged clenching. Arch Oral Biol, 2010. 55(11): p. 879-86.
5. Koolstra, J.H. and T.M.G.J. van Eijden, Combined finite-element and rigid-body analysis of human jaw joint dynamics. Journal of Biomechanics, 2005. 38(12): p. 2431-2439.
6. Rugh, J.D. and W.K. Solberg, Oral health status in the United States: temporomandibular disorders. J Dent Educ, 1985. 49(6): p. 398-406.
7. Loveless, T.P., et al., Efficacy of temporomandibular joint ankylosis surgical treatment. J Oral Maxillofac Surg, 2010. 68(6): p. 1276-82.
8. Ramos, A., et al., Numerical and Experimental Models of the Mandible. Experimental Mechanics, 2011. 51(7): p. 1053-1059.
9. Beek, M., et al., Three-dimensional finite element analysis of the human temporomandibular joint disc. Journal of Biomechanics, 2000. 33(3): p. 307-16.
10. Landes, C.A., et al., 3-D sonography for diagnosis of disk dislocation of the temporomandibular joint compared with MRI. Ultrasound Med Biol, 2006. 32(5): p. 633-9.
11. Perez del Palomar, A. and M. Doblare, Dynamic 3D FE modelling of the human temporomandibular joint during whiplash. Med Eng Phys, 2008. 30(6): p. 700-9.
12. Donzelli, P.S., et al., Biphasic finite element simulation of the TMJ disc from in vivo kinematic and geometric measurements. Journal of Biomechanics, 2004. 37(11): p. 1787-1791.
13. Chen, J. and K. Buckwalter, Displacement Analysis of the Temporomandibular Condyle from Magnetic-Resonance Images. Journal of Biomechanics, 1993. 26(12): p. 1455-&.
14. Jan Krystufek, Z.H., Martina Fricova and Radek Jirman, Experimental Analysis of the Temporomandibular Disc Movement During Mouth Opening. BULLETIN OF APPLIED MECHANICS, 2009. 5(17), : p. 18-22.
15. Tanaka, E., et al., Stress analysis in the TMJ during jaw opening by use of a three-dimensional finite element model based on magnetic resonance images. International Journal of Oral and Maxillofacial Surgery, 2001. 30(5): p. 421-430.
16. DeVocht, J.W., et al., A study of the control of disc movement within the temporomandibular joint using the finite element technique. J Oral Maxillofac Surg, 1996. 54(12): p. 1431-7; discussion 1437-8.
17. Ciftci, Y. and S. Canay, The effect of veneering materials on stress distribution in implant-supported fixed prosthetic restorations. Int J Oral Maxillofac Implants, 2000. 15(4): p. 571-82.
18. Kashi, A., A.R. Chowdhury, and S. Saha, Finite element analysis of a TMJ implant. J Dent Res, 2010. 89(3): p. 241-5.
19. vanEijden, T.M.G.J., J.A.M. Korfage, and P. Brugman, Architecture of the human jaw-closing and jaw-opening muscles. Anatomical Record, 1997. 248(3): p. 464-474.
20. del Palomar, A.P., et al., Clenching TMJs-loads increases in partial edentates: a 3D finite element study. Ann Biomed Eng, 2008. 36(6): p. 1014-23.
21. Koolstra, J.H. and T.M. van Eijden, Dynamics of the human masticatory muscles during a jaw open-close movement. Journal of Biomechanics, 1997. 30(9): p. 883-9.
22. Tanaka, E., M.S. Detamore, and L.G. Mercuri, Degenerative disorders of the temporomandibular joint: etiology, diagnosis, and treatment. J Dent Res, 2008. 87(4): p. 296-307.
23. Coutant, J.C., et al., Discrimination of objective kinematic characters in temporomandibular joint displacements. Archives of Oral Biology, 2008. 53(5): p. 453-461.