| 研究生: |
黃健威 Wong, Kin-Wai |
|---|---|
| 論文名稱: |
轉爐石在工程使用上之問題及其改善方法之研究 The Engineering Problem Induced by Basic Oxygen Furnace Slag and its Improvement Method |
| 指導教授: |
李德河
Lee, Der-Her 吳建宏 Wu, Jian-Hong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 轉爐石 、回填層 、起伏不平 、夯實 、碳化養護 、回脹試驗 、級配 |
| 外文關鍵詞: | Basic Oxygen Furnace, refilling layer, fluctuation, compaction, carbonation, swelling test, allocated proportion |
| 相關次數: | 點閱:105 下載:15 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
轉爐石為煉鋼過程中產生的副產品,我國年產量大約有140萬噸,其雖可作為土木材料使用,惟因本身具有回脹性,致使其用途受到限制。為擴大轉爐石在土木工程應用範圍,必須了解轉爐石應用在工程上所產生的問題及其改善方法,才能增加資源的再生和利用。
本研究分為兩部份,第一部份為以轉爐石為道路回填層之公路現地長期監測及室內回脹試驗之結合,以探討公路路面起伏不平的原因。第二部份則為室內改良方法之研究,分別研究對轉爐石材料的改良及對轉爐石回填層的改良,首先進行夯實及回脹試驗,使用土砂或淤泥與轉爐石調配出不同的級配,以找出其合乎回脹規範的最佳材料配合比例;另一則為模擬使用轉爐石回填土層以後,對其回脹之改善方法之研究,本研究嘗試使用碳化方式,以探討改善轉爐石回脹特性的效果;最後總結上述的研究,得到之主要研究成果如下:
(1)在使用未經處理的轉爐石作為道路回填層,經由長期監測及室內長期回脹試驗的結果,可以証明,轉爐石的確會產生不均勻回脹,成為路面起伏不平的問題原因之一。
(2)以土砂或淤泥分別與轉爐石調配成不同級配粒料時,可從個別材料的夯實試驗所得的最佳含水量及最大乾密度,經線性迴歸,得到各級配的最佳含水量及最大乾密度的相關式。
(3)從各種調配級配的回脹試驗得知,級配粒料中以淤泥拌合轉爐石為有效改良回脹特性的級配材料。
(4)從碳化後的回脹試驗得知,碳化後的轉爐石表面會生成一保護層,隨著時間增加而效果增強,但一旦保護層受到破壞以後,轉爐石之回脹則再度發生。
(5)通過一系列的轉爐石長期回脹試驗可以找出規範CNS 14602回脹試驗的試驗時間之弊端。
Basic Oxygen Furnace Slag (BOF) is the by-product in the steel manufacturing produces. The production of BOF is 1,400,000 tons in Taiwan in each year. Although the BOF can be used as a material in civil engineering, but swelling restricts its usage. To expand the application scope of BOF in civil engineering, we must know the problems and its improvement methods which will be used in the engineering to increase the resource recycling and utilization.
This study can be divided as two parts. The first part discusses the reason of fluctuation of the surface of the road base on the in-situ long time monitoring which refilled by BOF, and the swelling tests conducted in the laboratory. The second part is to study the modified methods to improve the quality of BOF and the problem of using BOF in the refilling layer. Firstly, we conducted compaction and swelling tests to find out the best allocated proportion, which is suitable for the regulated swelling by mixing mud or granulated soil to BOF with different allocated proportions. The other is to improve the swelling problems occurred at the refilling layer of BOF. We use the carbonation method to decrease the swelling of the basic oxygen furnace swelling. Finally, we conclude the investigations as the following points:
(1)We conducted the in-situ monitoring and the swelling test in the laboratory to the road refilled by raw BOF. It is confirmed that the fluctuation is caused by the swelling of the BOF.
(2)When we mix the granular soil or the mud to BOF with different allocated proportions, the optimum moisture content and the maximum dry unit weight can be obtained from the compaction tests. Then the relationship formula of the optimum moisture content and the maximum dry unit weight can be obtained by linear regressions.
(3)Mud is the most effective material to improve the swelling of the BOF from the swelling tests with different allocated proportions.
(4)The BOF generates the protection layer on the surface after the carbonation. The protection layer will be more effective as the time increases. However, the swelling happens again when the protection layer damaged.
(5)The long term swelling tests on BOF indicate the problem of swelling test period in CNS 14602.
1.「公路工程施工說明書」,台灣省交通處公路局編印,台北,台灣,1997。
2.「爐石利用推廣手冊」,中聯資源公司,高雄,台灣,2007。
3.中央氣象局,http://www.cwb.gov.tw/V6/index.htm,台北,台灣,2011。
4.中國國家標準,「CNS14602 道路用鋼爐渣」,經濟部標準檢驗局,台北,台灣2005。
5.中國國家標準,「CNS15311 粒料受水合作用之潛在膨脹試驗法」,經濟部標準檢驗局,台北,台灣,2010。
6.王金鐘,「轉爐石作為基底層材料及其工程特性之研究」,博士論 文,國立成功大學土木工程研究所,台南,台灣2005。
7.王櫻茂,「鹼‧骨材反應(I)中性化(II)」,台南,台灣,2000。
8.李春雄,「中鋼轉爐石回脹抑制之研究」,碩士論文,國立成功大學土木工程研究所,台南,台灣2002。
9.李德河、紀雲曜、田坤國,「泥岩基本特性及泥岩邊坡之保護措施」,地工技術,第48期,第35-47頁,1994。
10.沈茂松,「實用土壤力學手冊」,文笙書局,高雄,台灣,1988。
11.周墩堅,「泥岩與凝灰岩之回脹特性及剪力強度之研究」,碩士論文,國立成功大學土木工程研究所,台南,台灣,1988。
12.林勝彥,「轉爐石回脹行為及其顯微結構特性」,碩士論文,國立高雄應用科技大學土木工程暨防災科技研究所,高雄,台灣,2006。
13.施國欽,「岩石力學─大地工程學(四)」,文笙書局,台北,台灣,2004。
14.柯明賢、呂雅湘、吳孟樺,鋼鐵工業爐渣作為填築材料之工程特性與環境特性研究,鋼鐵工業爐渣資源化再利用實務研討會,第6-1~6-23頁,2002。
15.張高僑,「鈣系爐渣封存二氧化碳行為之研究」,碩士論文,國立成功大學環境工程研究所,台南,台灣2008。
16.許崎、林宗曾、張祖恩、鄭志鴻,「泥岩吸水回脹行為及機制」,第八屆大地工程學術研究討論會論文集,第125-1135頁,1999。
17.陳俊价,「古亭坑層泥岩含水量對力學特性影響之研究」,碩士論文,國立成功大學土木工程研究所,台南,台灣,2008。
18.黃兆龍,「混凝土性質與行為」,詹氏書局,第130~134頁,台北,台灣,1998。
19.黃兆龍,「高爐熟料及飛灰材料在混凝土工程之應用」,高爐石與飛灰資源在混凝土工程上應用研討會,財團法人台灣營建研究中心,1986。
20.楊沂恩,「泥岩地區邊坡坡面保護新工法之研究」,博士論文,國立成功大學土木工程研究所,台南,台灣,2007。
21.楊貫一,「爐石資源化─中鋼公司爐石應用的過去與未來」,技術與訓練,第17卷,第1期,第31~46頁,1992。
22.劉國忠,「煉鋼爐渣之資源化技術與未來推展方向」,環保月刊,第4期十月號,第117~118頁,2002。
23.蔡攀鰲,「公路工程學」,國立成功大學公共工程研究中心,台南,台灣,2000。
24.JIS A 5015,「道路用鋼鐵爐渣解說」,東京,日本,1992。
25.American Society for Testing and Materials, Designation: D4792-00, Standard Test Method for Potential Expansion of Aggregates from Hydration Reaction Annual Book of ASTM Standards, Vol.4 (3), West Conshohocken, Pennsylvania, 2000.
26.Beruto, D.T.; Botter,R., Liquid-like H2O adsorption layers to catalyze the Ca(OH)2/CO2 solid-gas reaction and to form a non-protective solid product layer at 20 ℃. Journal of the European Ceramic Society, Vol.20 (4), pp.497~503., 2000.
27.Bjerrum,L., ”Progression failure in slope of overconsolidatied plastic clays and clay shale”, Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.93,pp.1~49,1967.
28.Calleja, J. “Durability”, Proc Seventh International Conference on the Chemistry of Cement, Vol.7 (2), pp.1~43, 1980.
29.Dario T.B ,”Liquid-like H2O adsorption layers to catalyze the Ca(OH)2/CO2 solid gas reaction and to form a non-protective solid product layer at 20℃”, Journal of the European Ceramic Society ,Vol.20(4),pp.497~503, 2000.
30.Gamble,J. C., “Durability-plasticity classification of shales and other argillaceous rocks”, Ph. D. thesis, University of Illinois, 1971.
31.I‧.AkIn Altuna, ”Study on steel furnace slags with high MgO as additive in Portland cement”, Cement and Concrete Research ,Vol.32,pp. 1247~1249, 2002.
32.ISRM, “Basic geotechnical description of rock masses, ISRM commission on classification of rocks and rock masses “, International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, Vol.18, pp. 85~110, 1981.
33.James K. Mitchell; Kenichi Soga, “Fundamentals of Soil Behavior”, 3th Edition, John Wiley& Sons, Hoboken, New Jersey, USA, 2005.
34.Koide,H., “Research on using BOF slag for road construction”, Nakayama Steel Works Technical Report, Osaka, Japan, 1993.
35.Maries, A., “The activation of Portland cement by carbon dioxide”, Proceeding of Conference in Cement and Concrete Science, Oxford, UK, 1985.
36.Motz,H.,and Geiseler,J., “Products of steel slags an opportunity to save natural resources”, Waste Mangement,Vol.21(3),pp.285~293, 2001.
37.Sakulich ,Aaron R., ”Mechanical and microstructural characterization of an alkali-activated slag/limestone fine aggregate concrete”, Construction and Building Materials,Vol.23(8),pp.2951~2957, 2009.
38.Wang.G, ”Determination of the expansion force of coarse steel slag aggregate”, Construction and Building Materials,Vol 24(10),pp.1961~1966, 2010a.
39.Wang.G, Wang.Y.H., Gao.Z.L., ”Use of steel slag as a granular material: Volume expansion prediction and usability criteria”, Journal of Hazardous Materials, Vol.24(10),pp.1961~1966, 2010b.
40.Xue,Y.J., Wu,S.O,Hou,H.B ,Zha,J.,”Experimental Investigation of Basic Oxygen Furnace Slag Used as Aggregate in Asphalt Mixture,” Journal of Hazardous Materials, Vol.138(2), pp.261~268, 2006.