簡易檢索 / 詳目顯示

研究生: 鄭達融
Cheng, Ta-Jung
論文名稱: 共軛有機分子之熱電效應
Thermoelectric effects in organic conjugated material device
指導教授: 郭宗枋
Guo, Tzung-Fang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 99
中文關鍵詞: 熱電效應共軛有機分子石墨烯奈米碳管
外文關鍵詞: Thermoelectric effect, organic conjugated, graphene, carbon nanotube
相關次數: 點閱:110下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本篇論文主要探討PEDOT:PSS、石墨烯與奈米碳管作為主要材料製作的熱電元件之特性。在實驗開頭,我們分別探討PEDOT:PSS的DMSO摻雜效應對於薄膜內部結構與電性之變化以及多層膜結構使PEDOT產生極化改變,對於導電度與Seebeck常數的影響。接著我們嘗試引入石墨烯探討與PEDOT:PSS之間電性上的影響,藉由旋塗(spincoating)與滴鑄(dropcasting)兩種方法,觀察石墨烯的分散對整體薄膜熱電效應之作用,然後改以奈米碳管與PEDOT:PSS以疊層和混合的方式,觀察兩種材料如何影響彼此之熱電效應。最後,我們獨立探討奈米碳管之成膜特性對於其導電度影響,接著再以p型、n型材料摻雜,發現可能影響碳管內部載子濃度,因此能夠改變其熱電特性。

    In this thesis, we tried to investigate the thermoelectric effects of PEDOT:PSS and its composite materials. In the first part, we used three different methods to enhance the conductivity of PEDOT:PSS films, observing how Seebeck coefficient was affected by these methods. In the next part, we mixed PEDOT:PSS with graphene and single-walled carbon nanotube(SWCNT) respectively, and we found that sufficient graphene in PEDOT:PSS film could form carrier conduction paths to enhance carrier mobility but didn’t affect its Seebeck coefficient. But we realized that SWCNT couldn’t disperse in PEDOT:PSS solution, so the interaction between these two material was investigated in a sandwich structure. We knew that the Seebeck coefficient would be affected by the conductivities of both materials, and would approach to the higher one. In the last part, we investigated the thermoelectric effects in SWCNT, and used different type of materials doping SWCNT. Then we found Seebeck coefficient increased and conductivity decreased, and it implied the carrier concentration of SWCNT might be affected by doping.

    摘要 I Thermoelectric effects in organic conjugated material device III 致謝 X 目錄 XI 圖目錄 XV 表目錄 XX 第一章.緒論 1 1-1 前言 1 1-2 熱電元件的發展 2 1-3 有機熱電材料的特性 4 1-4 研究動機與大綱 6 1-4-1 研究動機 6 1-4-2 大綱 7 第二章.熱電效應理論與有機熱電元件研究回顧 8 2-1 熱電理論介紹 8 2-1-1 塞貝克(Seebeck)效應 8 2-1-2 佩爾蒂(Peltier)效應 9 2-1-3 湯姆森(Thomson)效應 10 2-1-4 以熱力學理論分析熱電能量關係式 11 2-1-5 品質因數 13 2-1-6 熱電理論的相關研究 14 2-2 共軛有機分子的導電特性 17 2-2-1 共軛聚合物結構與電荷傳導機制 17 2-2-2 共軛聚合物的摻雜機制 19 2-3 PEDOT:PSS的起源與簡介 21 2-4 文獻回顧PEDOT熱電相關研究 25 2-5 文獻回顧石墨烯與奈米碳管熱電相關研究 36 2-6 結論 45 第三章.元件製作與量測儀器介紹 47 3-1 製作元件與量測 47 3-2 玻璃基板清潔以及表面處理 47 3-3 有機熱電元件製作 48 3-3-1 材料介紹 48 3-3-2 單層膜元件製作方式 48 3-4 自製Seebeck真空量測系統 51 3-5 導電度量測 55 3-6 結論 57 第四章.探討共軛有機分子之熱電效應 58 4-1 改善PEDOT:PSS之導電度對於其熱電效應之影響 58 4-1-1 不同濃度DMSO摻雜對PEDOT:PSS導電度與Seebeck值之影響 58 4-1-2 探討以DI水與DMSO表面處理PEDOT:PSS薄膜之導電度變化 61 4-1-3 探討DMSO摻雜的多層膜結構對於熱電特性之影響 62 4-1-4 結論 65 4-2 PEDOT:PSS與Graphene的複合熱電效應 66 4-2-1 Graphene的熱電特性 66 4-2-2 與PEDOT:PSS複合的熱電特性 68 4-2-3 結論 72 4-3 單層碳管(SWCNT)的加入對PEDOT:PSS熱電效應之影響 73 4-3-1 探討單層碳管(SWCNT)與PEDOT:PSS混合熱電效應 73 4-3-2 探討疊層結構對於PEDOT:PSS/SWCNT複合薄膜的影響 75 4-3-3 結論 78 4-4 以單層碳管(SWCNT)為主的複合熱電效應 79 4-4-1 SWCNT的成膜與導電度 79 4-4-2 探討單層碳管(SWCNT)摻雜之熱電效應 85 4-4-3 結論 89 4-5 實驗總結 90 第五章.總結與未來研究建議 92 5-1 總結 92 5-2 未來研究建議 94 參考文獻 95

    [1] T. J. Seebeck, Magnetische polarisation der metalle und erze durch temperatur-differenz (1822-1823), W. Engelmann, Leipzig (1895).
    [2] W. Thomson, "On the dynamical theory of heat," Trans. R. Soc. Edinburgh: Earth Sci. 3, 91 (1851).
    [3] A. F. Ioffe, Semiconductor thermoelements and thermoelectric cooling, Infosearch, London (1957).
    [4] N. Cusack and P. Kendall, "The absolute scale of thermoelectric power at high temperature," Proc. Phys. Soc. 72, 898 (1958).
    [5] C. Wood, "Materials for thermoelectric energy conversion," Rep. Prog. Phys. 51, 459 (1988).
    [6] C. K. Chiang, C. B. Fincher, Jr., Y. W. Park, and A. J. Heeger, "Electrical conductivity in doped polyacetylene," Phys. Rev. Lett. 39, 1098 (1977).
    [7] J.-J. Li, X.-F. Tang, H. Li, Y.-G. Yan, and Q.-G. Zhang, "Synthesis and thermoelectric properties of hydrochloric acid-doped polyaniline," Synth. Met. 160, 1153 (2010).
    [8] Y. Xuan, X. Liu, S. Desbief, P. Leclere, M. Fahlman, R. Lazzaroni, M. Berggren, J. Corni, D. Emin, and X. Crispin, "Thermoelectric properties of conducting polymers: the case of poly(3-hexylthiophene)," Phys. Rev. B 82, 115454 (2010).
    [9] Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. M. Meskamp, and K. Leo, "Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells," Adv. Funct. Mater. 21, 1076 (2011).
    [10] O. Bubnova, Z. U. Khan, A. Malti, S. Braun, M. Fahlman, M. Berggren, and X. Crispin, "Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene)," Nat. Mater. 10, 429 (2011).
    [11] C. A. Hewitt, A. B. Kaiser, S. Roth, M. Craps, R. Czew, and D. L. Carroll, "Varying the concentration of single walled carbon nanotubes in thin film polymer composites and its effect on thermoelectric power," Appl. Phys. 98, 183110 (2011).
    [12] Y. Du, S. Z. Shen, W. Yang, R. Donelson, K. Cai, and P. S. Casey, "Simultaneous increase in conductivity and Seebeck coefficient in a polyaniline/graphene nanosheets thermoelectric nanocomposite," Synth. Met. 161, 2688 (2012).
    [13] H.-J. Song, C.-C. Liu, H.-F. Zhu, F.-F Kong, B.-Y Lu, J.-K. Xu, J.-M. Wang, and F. Zhao, "Improved thermoelectric performance of free-standing PEDOT:PSS/Bi2Te3 films with low thermal conductivity," J. Electron. Mater. 42, 1268 (2013).
    [14] K. C. See, J. P. Feser, C. E. Chen, A. Majumdar, J. J. Urban, and R. A. Segalman, "Water-processable polymer-nanocrystal hybrids for thermoelectrics," Nano Lett. 10, 4664 (2010).
    [15] A. J. Heeger, "Semiconducting polymers: the third generation," Chem. Soc. Rev. 39, 2354 (2010).
    [16] Q. Zhang, Y. Sun, W. Xu, and D. Zhu, "Organic thermoelectric materials: emerging green energy materials converting heat to electricity directly and efficiently," Adv. Mater. 26, 6829 (2014).
    [17] H. S. Lee, Thermal design: heat sinks, thermoelectrics, heat pipes, compact heat exchangers, and solar cells, New Jersey: John Wiley & Sons, 2011.
    [18] G. J. Snyder and E. S. Toberer, "Complex thermoelectric materials," Nat. Mater. 7, 105 (2008).
    [19] H. Fritzsche, "A general expression for the thermoelectric power," Solid State Commun. 9, 1813 (1971).
    [20] H. Ohta, T. Mizuno, S. Zheng, T. Kato, Y. Ikuhara, K. Abe, H. Kumomi, K. Nomura, and H. Hosono, "Unusually large enhancement of thermopower in an electric field induced two-dimensional electron gas," Adv. Mater. 24, 740 (2012).
    [21] D. K. Ko and C. B. Murray, "Probing the fermi energy level and the density of states distribution in PbTe nanocrystal (quantum dot) solids by temperature-dependent thermopower measurements," ACS Nano 5, 4810 (2011).
    [22] S. A. Baily and D. Emin, "Transport properties of amorphous antimony telluride," Phys. Rev. B 73, 165211 (2006).
    [23] M. Culebras, C. M. Gomez, and A. Cantarero, "Enhanced thermoelectric performance of PEDOT with different counter-ions optimized by chemical reduction," J. Mater. Chem. A 2, 10109 (2014).
    [24] X. Crispin and O. Bubnova, "Towards polymer-based organic thermoelectric generators," Energy Environ. Sci. 5, 9345 (2012).
    [25] A. J. Heeger, "Semiconducting and metallic polymers: the fourth generation of polymeric materials," J. Phys. Chem. B 105, 8475 (2011).
    [26] M. E. Abdelhamid, A. P. O'Mullane, and G. A. Snook, "Storing energy in plastics: a review on conducting polymers & their role in electrochemical energy storage," RSC Adv. 5, 11611 (2015).
    [27] Q. Pei, G. Zuccarello, M. Ahlskog, and O. Inganas, "Electrochromic and highly stable poly (3,4-ethylenedioxythiophene) switches between opaque blue-black and transparent sky blue," Polymer 35, 1347 (1994).
    [28] L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, "Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future," Adv. Mater. 12, 481 (2000).
    [29] Q. Wei, M. Mukaida, K. Kirihara, Y. Naitoh and T. Ishida, "Recent Progress on PEDOT-Based Thermoelectric Materials," Materials 8, 732 (2015).
    [30] J.-Y. Kim, M.-H. Kwon, Y.-K. Min, S. Kwon, and D.-W. Ihm, "Self-Assembly and Crystalline Growth of Poly(3,4-ethylenedioxythiophene) Nanofilms," Adv. Mater. 19, 3501 (2007).
    [31] S. Ashizawa, R. Horikawa, H. Okuzaki, "Effects of solvent on carrier transport in poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate)," Synth. Met. 153, 5 (2008).
    [32] K.-C. Chang, M.-S. Jeng, C.-C. Yang, Y.-W. Chou, S.-K. Wu, M. A. Thomas, and Y.-C. Peng, "The Thermoelectric Performance of Poly(3,4-ethylenedioxythiophene)/Poly(4-styrenesulfonate) Thin Films," J. Electro. Mater. 38, 1182 (2009).
    [33] J. Ouyang, Q. Xu, C.-W. Chu, Y. Yang, G. Li, and J. Shinar, "On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) film through solvent treatment," Polymer 45, 8443 (2004).
    [34] D. Alemu, H.-Y. Wei, K.-C. Ho, and C.-W. Chu, "Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells, " Energy Environ. Sci. 5, 9662 (2012).
    [35] Y. Xia, K. Sun, and J. Ouyang, "Solution-Processed Metallic Conducting Polymer Films as Transparent Electrode of Optoelectronic Devices," Adv. Mater. 24, 2436 (2012).
    [36] B. Zhang, J. Sun, H. E. Katz, F. Fang, and R. L. Opila, "Promising Thermoelectric Properties of Commercial PEDOT:PSS Materials and Their Bi2Te3 Powder Composites," ACS Appl. Mater. Interfaces 2, 3170 (2010).
    [37] O. Bubnova, Z. U. Khan, A. Malti, S. Braun, M. Fahlman, M. Berggren and X. Crispin, "Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene)," Nat. Mater. 10, 429 (2011).
    [38] T. Park, C. Park, B. Kim, H. Shin and E. Kim, "Flexible PEDOT electrodes with large thermoelectric power factors to generate electricity by the touch of fingertips," Energy Environ. Sci. 6, 788 (2013).
    [39] G.-H. Kim, L. Shao, K. Zhang, and K. P. Pipe, "Engineered doping of organic semiconductors for enhanced thermoelectric efficiency," Nat. Mater. 12, 719 (2013).
    [40] N. Massonnet, A. Carella, O. Jaudouin, P. Rannou, G. Laval, C. Celle, and J.-P. Simonato, "Improvement of the Seebeck coefficient of PEDOT:PSS by chemical reduction combined with a novel method for its transfer using free-standing thin films," J. Mater. Chem. C 2, 1278 (2014).
    [41] H. Park, S. H. Lee, F. S. Kim, H. H. Choi, I. W. Cheong, and J. H. Kim, "Enhanced thermoelectric properties of PEDOT:PSS nanofilms by a chemical dedoping process," J. Mater. Chem. A 2, 6532 (2014).
    [42] Q. S. Wei, M. Mukaida, K. Kirihara, Y. Naitoh, and T. Ishida, "Thermoelectric power enhancement of PEDOT:PSS in high-humidity conditions," Appl. Phys. Express 7, 031601 (2014).
    [43] G. H. Kim, D. H. Hwang, and S. I. Woo, "Thermoelectric properties of nanocomposite thin films prepared with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) and graphene," Phys. Chem. Chem. Phys. 14, 3530 (2012).
    [44] B. Abad, I. Alda, P. Díaz-Chao, H. Kawakami, A. Almarza, D. Amantia, D. Gutierrez, L. Aubouy, and M. Martín-González, "Improved power factor of polyaniline nanocomposites with exfoliated graphene nanoplatelets (GNPs), " J. Mater. Chem. A 1, 10450 (2013).
    [45] C. Yu, Y. S. Kim, D. Kim, and J. C. Grunlan, "Thermoelectric behavior of segregated-network polymer nanocomposites," Nano Lett. 9, 1283 (2009).
    [46] C. Yu, K. Choi, L. Yin, and J. C. Grunlan, "Light-Weight flexible carbon nanotube based organic composites with large thermoelectric power factors," ACS Nano 5, 7885 (2011).
    [47] G. P. Moriarty, K. Briggs, B. Stevens, C. Yu, and J. C. Grunlan, "Fully organic nanocomposites with high thermoelectric power factors by using a dual-stabilizer preparation," Energy Technol. 1, 265 (2013).
    [48] Q. Yao, L. Chen, W. Zhang, S. Liufu, X. Chen, "Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites," ACS Nano 4, 2445 (2010).
    [49] Q. Yao, Q. Wang, L. Wang, and L. Chen, "Abnormally enhanced thermoelectric transport properties of SWNT/PANI hybrid films by the strengthened PANI molecular ordering," Energy Environ. Sci. 7, 3801 (2014).
    [50] C. Bounioux, P. Díaz-Chao, M. Campoy-Quiles, M. S. Martín-González, A. R. Goࣤࣤñi, R. Yerushalmi-Rozene, and C. Müller, "Thermoelectric composites of poly(3-hexylthiophene) and carbon nanotubes with a large power factor," Energy Environ. Sci. 6, 918 (2013).
    [51] C.-Y. Lu, C.-H. Tsai, Y.-T. Tsai, C.-J. Hsu, C.-H. Chang, and C.-C. Wu, "Spontaneous Formation of Nanofi brillar and Nanoporous Structures in High-Conductivity Conducting Polymers and Applications for Dye-Sensitized Solar Cells," Adv. Energy Mater. 5, 1401738 (2015).
    [52] J. Paloheimo, H. Isotalo, J. Kastner, and H. Kuzmany, "Conduction mechanisms in undoped thin-films of C60 and C60/70," Synth. Met. 56, 3185 (1993).

    無法下載圖示 校內:2021-07-26公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE