| 研究生: |
孫聖諺 Sun, Sheng-Yan |
|---|---|
| 論文名稱: |
實驗上識別產生六體糾纏之光子干涉能力 Experimental Capability of Photon Interference for Generating Six-Photon Entanglement |
| 指導教授: |
李哲明
Li, Che-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 量化量子過程 、糾纏生成與保存 、六光子糾纏 、光纖傳輸糾纏光子 、糾纏目擊 |
| 外文關鍵詞: | Quantification quantum processes, Entanglement generation and preservation, Six-photon entanglement, Fiber transfer entangled photon, Entanglement witness |
| 相關次數: | 點閱:44 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在量子光學系統上,產生多光子糾纏實驗中最重要的操作為光子干涉,沒有他無法實現多光子糾纏,他是一種產生量子糾纏的操作。量子糾纏為量子力學中獨有的性質,在進行量子糾纏相關操作時,量子糾纏在操作中的產生或保存與否決定整個量子任務的成敗。但如今對於干涉操作中如何量化產生或保存糾纏仍未明朗。在本研究中我們應用了能夠量化光子干涉過程中產生與保存糾纏的能力理論,並首次實際使用於兩對光子的干涉實驗中,以產生糾纏之能力來預測干涉操作產生之四體格林伯格-霍恩-蔡林格態(GHZ 態)。我們更進一步引入噪音至干涉操作中,並應用過程保真度下界估計與我們分析過程能力的方式,進一步表明不完美干涉操作是如何影響干涉操作產生或保存糾纏的能力,並驗證我們工具在實際應用的有效性。更進一步,在光量子系統中,多光子糾纏的數目代表著我們執行量子任務的能力。基於這一觀點,我們成功建立了基於光纖傳輸的六光子糾纏工程,奠定製造高度複雜光子網絡的能力。包含了在糾纏光子傳輸過程中偏振演化的補償方法,同時應用了一種能夠快速搜尋干涉重合的技術,以高效地建立多光子糾纏態。最後,我們透過光子量子過程能力的分析技術,在不執行量子斷層掃描下評估了我們所建立的糾纏態與六體GHZ 態之間的接近程度,並實際透過兩個設置之糾纏目擊來驗證所製造的狀態具有真正的多體糾纏。結果顯示,我們的六重符合糾纏光子產率約為每三小時250 顆,六體狀態的保真度經由過程能力方法估計為0.5203,糾纏目擊數值為-0.0801±0.0037,其具有真正的多體糾纏,也表明了我們工具的實用性。
In quantum optics systems, photon interference is the crucial operation for generating multiphoton entanglement in experiments. Without it, achieving multiphoton entanglement would not be possible. Quantum entanglement is a unique property of quantum mechanics and is a vital resource in quantum information processing. During operations related to quantum entanglement, whether entanglement is generated or preserved within the operation determines the success of the entire quantum task. However, quantifying entanglement generation or preservation in interference operations remains unclear. In this study, we applied the theoretical framework of quantifying the capability of generating and preserving entanglement in photon interference processes. For the first time, we implemented this framework in an experimental setup involving the interference of two pairs of photons. We utilized the entanglement generation capability to predict the creation of the four-photon Greenberger-Horne- Zeilinger (GHZ) state through interference operations. Furthermore, we introduced noise into the interference operation and employed the process fidelity lower bounds, along with our analysis of process capabilities. This approach further illustrates how imperfect interferenceoperations impact the ability to generate or preserve entanglement. It also validates the effectiveness of our methodology in practical applications. Furthermore, the number of multiphoton entanglements in the photonic quantum systems represents our capacity to perform quantum tasks. With this perspective, we successfully established a six-photon entanglement based on optical fiber transmission, laying the foundation for creating highly complex photonic networks. This encompassed compensation methods for polarization evolution during entangled photon transmission alongside a technique for efficiently locating interference overlap, facilitating the efficient creation of multiphoton entangled states. Finally, utilizingthe analysis technique of photon quantum process capabilities, we evaluated the proximity between the entangled states we established and the six-photon GHZ state without the need for quantum tomography. We validated the genuinely multipartite entanglement of the created states through two local measurement settings. The results revealed that our six-fold entangled photon generation rate is approximately 250 every three hours. The fidelity of the six-photon state, estimated using the process capability approach, is 0.5203. The entanglement witness value is -0.0801 ± 0.0037, indicating genuine multipartite entanglement and highlighting the practicality of our methodology.
[1] B. Bell, A. S. Clark, M. S. Tame, M. Halder, J. Fulconis, W. J. Wadsworth, and J. G. Rarity, “Experimental characterization of photonic fusion using fiber sources,” New Journal of Physics, vol. 14, p. 023021, 2012.
[2] E. T. Campbell, “Optimal entangling capacity of dynamical processes,” Phys. Rev. A, vol. 82, p. 042314, 2010.
[3] L. Moravčíková and M. Ziman, “Entanglement-annihilating and entanglementbreaking channels,” Journal of Physics A: Mathematical and Theoretical, vol. 43, p. 275306, 2010.
[4] Y.-Z. Zhen, Y. Mao, K. Chen, F. Buscemi, and O. Dahlsten, “Unified approach to witness non-entanglement-breaking quantum channels,” Phys. Rev. A, vol. 101, p. 062301, 2020.
[5] Y. Mao, Y.-Z. Zhen, H. Liu, M. Zou, Q.-J. Tang, S.-J. Zhang, J. Wang, H. Liang, W. Zhang, H. Li, L. You, Z. Wang, L. Li, N.-L. Liu, K. Chen, T.-Y. Chen, and J.-W. Pan, “Experimentally verified approach to nonentanglement-breaking channel certification,” Phys. Rev. Lett., vol. 124, p. 010502, 2020.
[6] C.-Y. Hsieh, “Resource preservability,” Quantum, vol. 4, p. 244, 2020.
[7] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys., vol. 81, pp. 865–942, 2009.
[8] C. H. Bennett, D. P. DiVincenzo, P. W. Shor, J. A. Smolin, B. M. Terhal, and W. K. Wootters, “Remote state preparation,” Phys. Rev. Lett., vol. 87, p. 077902, 2001.
[9] N. A. Peters, J. T. Barreiro, M. E. Goggin, T.-C. Wei, and P. G. Kwiat, “Remote state preparation: Arbitrary remote control of photon polarization,” Phys. Rev. Lett., vol. 94, p. 150502, 2005.
[10] J. T. Barreiro, T.-C. Wei, and P. G. Kwiat, “Remote preparation of single-photon “hybrid” entangled and vector-polarization states,” Phys. Rev. Lett., vol. 105, p. 030407, 2010.
[11] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels,” Phys. Rev. Lett., vol. 70, pp. 1895–1899, 1993.
[12] X.-X. Xia, Q.-C. Sun, Q. Zhang, and J.-W. Pan, “Long distance quantum teleportation,” Quantum Science and Technology, vol. 3, p. 014012, 2017.
[13] M. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W. Itano, J. Jost, E. Knill, C. Langer, D. Leibfried, R. Ozeri, et al., “Deterministic quantum teleportation of atomic qubits,” Nature, vol. 429, pp. 737–739, 2004.
[14] J. F. Sherson, H. Krauter, R. K. Olsson, B. Julsgaard, K. Hammerer, I. Cirac, and E. S. Polzik, “Quantum teleportation between light and matter,” Nature, vol. 443, pp. 557– 560, 2006.
[15] A. K. Ekert, “Quantum cryptography based on bell’s theorem,” Phys. Rev. Lett., vol. 67, pp. 661–663, 1991.
[16] A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Deviceindependent security of quantum cryptography against collective attacks,” Phys. Rev. Lett., vol. 98, p. 230501, 2007.
[17] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys., vol. 81, pp. 1301–1350, 2009.
[18] D. Gottesman, Stabilizer codes and quantum error correction. California Institute of Technology, 1997.
[19] D. Schlingemann and R. F. Werner, “Quantum error-correcting codes associated with graphs,” Physical Review A, vol. 65, p. 012308, 2001.
[20] P. Aliferis and D. W. Leung, “Simple proof of fault tolerance in the graph-state model,” Physical Review A, vol. 73, p. 032308, 2006.
[21] D. Schlingemann, “Stabilizer codes can be realized as graph codes,” arXiv preprint quant-ph/0111080, 2001.
[22] R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Physical review letters, vol. 86, p. 5188, 2001.
[23] R. Raussendorf, D. E. Browne, and H. J. Briegel, “Measurement-based quantum computation on cluster states,” Physical review A, vol. 68, p. 022312, 2003.
[24] V. Danos and E. Kashefi, “Determinism in the one-way model,” Physical Review A, vol. 74, p. 052310, 2006.
[25] D. E. Browne, E. Kashefi, M. Mhalla, and S. Perdrix, “Generalized flow and determinism in measurement-based quantum computation,” New Journal of Physics, vol. 9, p. 250, 2007.
[26] A. Broadbent, J. Fitzsimons, and E. Kashefi, “Universal blind quantum computation,” pp. 517–526, 2009.
[27] S. Barz, E. Kashefi, A. Broadbent, J. F. Fitzsimons, A. Zeilinger, and P. Walther, “Demonstration of blind quantum computing,” science, vol. 335, pp. 303–308, 2012. [28] T. Morimae and K. Fujii, “Blind quantum computation protocol in which alice only makes measurements,” Physical Review A, vol. 87, p. 050301, 2013.
[29] C. Greganti, M.-C. Roehsner, S. Barz, T. Morimae, and P. Walther, “Demonstration of measurement-only blind quantum computing,” New Journal of Physics, vol. 18, p. 013020, 2016.
[30] X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, et al., “Experimental ten-photon entanglement,” Physical review letters, vol. 117, p. 210502, 2016.
[31] J. C. Matthews, A. Politi, A. Stefanov, and J. L. O’brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nature Photonics, vol. 3, pp. 346–350, 2009.
[32] C.-C. Kuo, S.-H. Chen, W.-T. Lee, H.-M. Chen, H. Lu, and C.-M. Li, “Quantum process capability,” Scientific reports, vol. 9, pp. 1–12, 2019.
[33] J.-H. Hsieh, S.-H. Chen, and C.-M. Li, “Quantifying quantum-mechanical processes,” Scientific reports, vol. 7, p. 13588, 2017.
[34] S.-H. Chen, M.-L. Ng, and C.-M. Li, “Quantifying entanglement preservability of experimental processes,” Physical Review A, vol. 104, p. 032403, 2021.
[35] E. Chitambar and G. Gour, “Quantum resource theories,” Reviews of modern physics, vol. 91, p. 025001, 2019.
[36] Y. Liu and X. Yuan, “Operational resource theory of quantum channels,” Physical Review Research, vol. 2, p. 012035, 2020.
[37] D. Rosset, F. Buscemi, and Y.-C. Liang, “Resource theory of quantum memories and their faithful verification with minimal assumptions,” Physical Review X, vol. 8, p. 021033, 2018.
[38] T. Theurer, D. Egloff, L. Zhang, and M. B. Plenio, “Quantifying operations with an application to coherence,” Physical review letters, vol. 122, p. 190405, 2019.
[39] R. Takagi and B. Regula, “General resource theories in quantum mechanics and beyond: operational characterization via discrimination tasks,” Physical Review X, vol. 9, p. 031053, 2019.
[40] X. Yuan, Y. Liu, Q. Zhao, B. Regula, J. Thompson, and M. Gu, “Universal and operational benchmarking of quantum memories,” NPJ Quantum Information, vol. 7, p. 108, 2021.
[41] Z.-W. Liu and A. Winter, “Resource theories of quantum channels and the universal role of resource erasure,” arXiv preprint arXiv:1904.04201, 2019.
[42] G. Gour and A. Winter, “How to quantify a dynamical quantum resource,” Physical review letters, vol. 123, p. 150401, 2019.
[43] G. Saxena, E. Chitambar, and G. Gour, “Dynamical resource theory of quantum coherence,” Physical Review Research, vol. 2, p. 023298, 2020.
[44] R. Takagi, K. Wang, and M. Hayashi, “Application of the resource theory of channels to communication scenarios,” Physical Review Letters, vol. 124, p. 120502, 2020.
[45] R. Uola, T. Kraft, and A. A. Abbott, “Quantification of quantum dynamics with inputoutput games,” Physical Review A, vol. 101, p. 052306, 2020.
[46] H. F. Hofmann, “Complementary classical fidelities as an efficient criterion for the evaluation of experimentally realized quantum operations,” Phys. Rev. Lett., vol. 94, p. 160504, 2005.
[47] H. F. Hofmann, R. Okamoto, and S. Takeuchi, “Analysis of an experimental quantum logic gate by complementary classical operations,” Modern Physics Letters A, vol. 21, pp. 1837–1850, 2006.
[48] G. Tóth and O. Gühne, “Detecting genuine multipartite entanglement with two local measurements,” Physical review letters, vol. 94, p. 060501, 2005.
[49] M. Bourennane, M. Eibl, C. Kurtsiefer, S. Gaertner, H. Weinfurter, O. Gühne, P. Hyllus, D. Bruß, M. Lewenstein, and A. Sanpera, “Experimental detection of multipartite entanglement using witness operators,” Physical review letters, vol. 92, p. 087902, 2004.
[50] Y. Shih, An introduction to quantum optics: photon and biphoton physics. CRC press, 2020.
[51] J.-w. Pan and A. Zeilinger, “Greenberger-horne-zeilinger-state analyzer,” Physical Review A, vol. 57, p. 2208, 1998.
[52] J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Reviews of Modern Physics, vol. 84, p. 777, 2012.
[53] I. L. Chuang and M. A. Nielsen, “Prescription for experimental determination of the dynamics of a quantum black box,” Journal of Modern Optics, vol. 44, pp. 2455–2467, 1997.
[54] J. Poyatos, J. I. Cirac, and P. Zoller, “Complete characterization of a quantum process: the two-bit quantum gate,” Physical Review Letters, vol. 78, p. 390, 1997. [55] Nweport, “NPX400SG https://www.newport.com/p/NPX400SG,”
[56] M. Yasin, S. W. Harun, and H. Arof, “Recent progress in optical fiber research,” 2012.
[57] J. Jeong, “Polarization control and measurements for optical fibers,” Newport, Application Note, vol. 20, 2006.
[58] J.-x. Cai, K. Golovchenko, and G. Mohs, Optical Fiber Telecommunications VIB: Chapter 25. Modern Undersea Transmission Technology. Elsevier Inc. Chapters, 2013. [59] U. Q. Devices, “Logic-16 https://uqdevices.com/products/,”
[60] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information. Cambridge university press, 2010.
[61] K. Vogel and H. Risken, “Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase,” Physical Review A, vol. 40, p. 2847, 1989.
[62] U. Leonhardt, Measuring the quantum state of light, vol. 22. Cambridge university press, 1997.
[63] J. Lofberg, “Yalmip: A toolbox for modeling and optimization in matlab,” pp. 284–289, 2004.
[64] K.-C. Toh, M. J. Todd, and R. H. Tütüncü, “Sdpt3—a matlab software package for semidefinite programming, version 1.3,” Optimization methods and software, vol. 11, pp. 545–581, 1999.
[65] E. D. Andersen and K. D. Andersen, “The mosek interior point optimizer for linear programming: an implementation of the homogeneous algorithm,” in High performance optimization, pp. 197–232, Springer, 2000.
[66] C. H. Bennett, D. P. DiVincenzo, P. W. Shor, J. A. Smolin, B. M. Terhal, and W. K. Wootters, “Remote state preparation,” Physical Review Letters, vol. 87, p. 077902, 2001.
[67] P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Physical Review Letters, vol. 75, p. 4337, 1995.
[68] C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “Generation of correlated photon pairs in type-ii parametric down conversion—revisited,” Journal of Modern Optics, vol. 48, pp. 1997–2007, 2001.
[69] Y. Shih, “Entangled biphoton source-property and preparation,” Reports on Progress in Physics, vol. 66, p. 1009, 2003.
[70] J.-H. Hsieh, “Theory of quantifying quantum-mechanical process and its application,” National Cheng Kung University, 2017.
[71] C.-K. Hong, Z.-Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Physical review letters, vol. 59, p. 2044, 1987.
[72] R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nature photonics, vol. 3, pp. 696–705, 2009.
[73] Excelitas, “SPCM-AQRH https://www.excelitas.com/product/spcm-aqrh,”
[74] O. Gühne, C.-Y. Lu, W.-B. Gao, and J.-W. Pan, “Toolbox for entanglement detection and fidelity estimation,” Physical Review A, vol. 76, p. 030305, 2007.
[75] T.-J. Tsai, “Experimental realization of semi-device-independent one-way quantum computation,” National Cheng Kung University, 2022.
[76] K. Wei-Ting, “Experimental verification of genuine four-photon quantum steering using entanglement witness observables,” National Cheng Kung University, 2022.
[77] W.-T. Kao, C.-Y. Huang, T.-J. Tsai, S.-H. Chen, S.-Y. Sun, Y.-C. Li, T.-L. Liao, C.-S. Chuu, H. Lu, and C.-M. Li, “Scalable quantum network determination with einsteinpodolsky-rosen steering,” arXiv preprint arXiv:2303.17771, 2023.
[78] R. F. Werner, “Quantum states with einstein-podolsky-rosen correlations admitting a hidden-variable model,” Physical Review A, vol. 40, p. 4277, 1989.
[79] R. Okamoto, J. L. O’Brien, H. F. Hofmann, T. Nagata, K. Sasaki, and S. Takeuchi, “An entanglement filter,” Science, vol. 323, pp. 483–485, 2009.
[80] C.-Y. Lu, X.-Q. Zhou, O. Gühne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, and J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nature physics, vol. 3, pp. 91–95, 2007.
[81] L. Yu-Cheng, “Efficient experimental detection of quantum coherence transmission in a six-photon quantum network,” National Cheng Kung University, 2023.
[82] E. Zhu and L. Qian, “Coincidence detection with free-running id220 detectors application note,”
[83] E. W. Weisstein, “Cross-Correlation https://mathworld.wolfram.com/crosscorrelation.html,”
[84] D.-G. Im, Y. Kim, and Y.-H. Kim, “Dispersion cancellation in a quantum interferometer with independent single photons,” Optics Express, vol. 29, pp. 2348–2363, 2021.
[85] Y.-H. Kim, S. P. Kulik, M. V. Chekhova, W. P. Grice, and Y. Shih, “Experimental entanglement concentration and universal bell-state synthesizer,” Physical Review A, vol. 67, p. 010301, 2003.
[86] H.-S. Zhong, Y. Li, W. Li, L.-C. Peng, Z.-E. Su, Y. Hu, Y.-M. He, X. Ding, W. Zhang, H. Li, et al., “12-photon entanglement and scalable scattershot boson sampling with optimal entangled-photon pairs from parametric down-conversion,” Physical review letters, vol. 121, p. 250505, 2018.
[87] L.-K. Chen, Z.-D. Li, X.-C. Yao, M. Huang, W. Li, H. Lu, X. Yuan, Y.-B. Zhang, X. Jiang, C.-Z. Peng, et al., “Observation of ten-photon entanglement using thin bib 3 o 6 crystals,” Optica, vol. 4, pp. 77–83, 2017.
[88] C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, et al., “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science, vol. 351, pp. 1176– 1180, 2016.
[89] T.-L. H. Kuan-Jou Wang, Che-Ming Li, “Efficient quantification of quantum processes: Experimental validation with photonic fusion (in preparation),” 2023.