| 研究生: |
葉訓豪 Yeh, Hsun-Hao |
|---|---|
| 論文名稱: |
介白素-1β所誘發的腹主動脈血管平滑肌細胞的老化 Interleukin-1β-Induced Cellular Senescence of Vascular Smooth Muscle Cells Derived from Rat Abdominal Aorta |
| 指導教授: |
江美治
Jiang, Meei-Jyh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 細胞生物與解剖學研究所 Institute of Cell Biology and Anatomy |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 介白素-1β 、血管平滑肌細胞 、細胞老化 、氧化壓力 、去氧核醣核酸損傷 |
| 外文關鍵詞: | IL-1β, vascular smooth muscle cell, cellular senescence, oxidative stress, DNA damage |
| 相關次數: | 點閱:81 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
心血管疾病,如動脈粥狀硬化以及主動脈瘤,發生在腹主動脈的機率高於在胸主動脈。血管的老化是心血管疾病發生的一個決定性的危險因子,通常以血管細胞的老化來呈現,且伴隨發炎反應以及活性氧分子(ROS)的產生。在過去的研究中發現,介白素-1β (IL-1β),一種促發炎的細胞素,會促使多種細胞ROS的產生並導致去氧核醣核酸(DNA)損傷。我們假設IL-1β會誘導血管平滑肌細胞老化,並探討IL-1β的作用在大鼠胸主動脈所衍生的平滑肌細胞(RTA-VSMCs)以及腹主動脈衍生的平滑肌細胞(RAA-VSMCs)之間是否有差異。我們藉由細胞週期抑制蛋白p16和p21的表現以及老化相關的β-半乳糖苷酶(SA-β-Gal)的活性來評估細胞的老化。在IL-1β處理24小時後,在RTA-VSMCs及RAA-VSMCs均可偵測到p16和p21的表現量增加,但IL-1β所需的濃度在RTA-VSMCs為100-1000 pg/mL,而在RAA-VSMCs則是1-10 pg/mL。當給予RTA-VSMCs與RAA-VSMCs其各自最大效應濃度的IL-1β處理24、48和72小時後,其SA-β-Gal的活性都顯著地增加,且比例相似。以1和10 pg/mL的IL-1β處理24小時之後,RAA-VSMCs中ROS的量以及DNA損傷的指標,γH2AX,皆顯著上升,但對RTA-VSMCs中的ROS增加及γH2AX的量並無影響。此外,以1和10 pg/mL的IL-1β處理24小時,也會增加RAA-VSMCs粒線體中ROS的生成。我們接著觀察IL-1β在RAA-VSMCs中誘發ROS產生、DNA損傷和老化指標蛋白表現發生的時序。在IL-1β處理後,RAA-VSMCs的ROS量在45分鐘時顯著地上升,並持續至少2小時;DNA損傷的指標γH2AX在1小時後顯著地增加;而p21和p16的表現量則分別在6小時及24小時後上升。我們使用兩種抗氧化劑,N-乙酰基-L-半胱氨酸(NAC)以及具細胞膜通透性的過氧化氫酶(catalase-PEG),進一步確認ROS在IL-1β所引起的RAA-VSMCs細胞老化所扮演的角色。結果顯示,在RAA-VSMCs中,NAC或catalase-PEG的共同處理都能有效地抑制IL-1β所刺激的ROS產生,同時抑制了IL-1β所誘發的γH2AX量以及p16和p21的表現。本研究結果顯示,RAA-VSMCs較RTA-VSMCs更容易被IL-1β誘導而引起細胞老化。在RAA-VSMCs,IL-1β藉由產生氧化壓力,進而誘發DNA損傷以及細胞老化。
Cardiovascular diseases including atherosclerosis and aortic aneurysms occur more often in the abdominal aorta (AA) than in the thoracic aorta (TA). Vascular aging, a dominant risk factor for cardiovascular diseases, is manifested with vascular cell senescence and increases in inflammation and reactive oxygen species (ROS) production. The pro-inflammatory cytokine, interleukin-1β (IL-1β), was reported to induce ROS production and trigger DNA damage in various cell types. We hypothesized that IL-1β induces cellular senescence of vascular smooth muscle cells (VSMCs) and examined whether IL-1β differentially induced cellular senescence of VSMCs derived from rat TA (TA-VSMCs) and AA (AA-VSMCs). Cellular senescence was assessed with the expression of two cell cycle inhibitors, p16 and p21, and senescence-associated β-galactosidase (SA-β-Gal) activity. IL-1β treatment for 24 hours (24 h) up-regulated the expression of p16 and p21, which was most pronounced between 100 and 1000 pg/mL in rat TA-VSMCs but peaked between 1 and 10 pg/mL in rat AA-VSMCs. When treated with their respective, maximally effective doses of IL-1β for 24 h, 48 h, and 72 h, SA-β-Gal activities were stimulated to similar degrees in these VSMCs. Treatment with IL-1β at 1 & 10 pg/mL for 24 h markedly increased ROS production and DNA damage marker γH2AX levels in rat AA-VSMCs without significant effects on rat TA-VSMCs. Furthermore, IL-1β stimulated mitochondrial ROS production detected with MitoSOXTM in rat AA-VSMCs. We next examined time courses of IL-1β-induced ROS production, DNA damage, and senescence marker expression in AA-VSMCs. Following IL-1β treatment, ROS production markedly increased at 45 min and sustained to 2 h, DNA damage marker γH2AX levels increased markedly at 1 h and stayed elevated up to 24 h, whereas the expression of p21 and p16 was upregulated at 6 h and 24 h, respectively. ROS scavengers, N-acetyl-L-cysteine and a membrane-permeable catalase, reduced IL-1β-induced ROS production at 24 h with concomitant inhibition on DNA damage marker γH2AX levels and the expression of p21 and p16 in AA-VSMCs. These results suggested that AA-derived VSMCs are more susceptible to IL-1β-induced cellular senescence than their counterparts from TA. Furthermore, ROS production is required for IL-1β-induced DNA damage and cellular senescence of rat AA-VSMCs.
References
1. Lakatta, E.G. Cardiovascular regulatory mechanisms in advanced age. Physiol Rev 73, 413-467 (1993).
2. Go, A.S. et al. Heart disease and stroke statistics--2013 update: a report from the American Heart Association. Circulation 127, e6-e245 (2013).
3. Lakatta Edward, G. & Levy, D. Arterial and Cardiac Aging: Major Shareholders in Cardiovascular Disease Enterprises. Circulation 107, 139-146 (2003).
4. Collins, C. & Tzima, E. Hemodynamic forces in endothelial dysfunction and vascular aging. Exp Gerontol 46, 185-188 (2011).
5. Heffernan, K.S., Fahs, C.A., Ranadive, S.M. & Patvardhan, E.A. L-arginine as a nutritional prophylaxis against vascular endothelial dysfunction with aging. J Cardiovasc Pharmacol Ther 15, 17-23 (2010).
6. Gaballa, M.A. et al. Large artery remodeling during aging: biaxial passive and active stiffness. Hypertension 32, 437-443 (1998).
7. Wang, J.C. & Bennett, M. Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ Res 111, 245-259 (2012).
8. Majesky, M.W. Developmental basis of vascular smooth muscle diversity. Arterioscler Thromb Vasc Biol 27, 1248-1258 (2007).
9. DeBakey, M.E. & Glaeser, D.H. Patterns of atherosclerosis: effect of risk factors on recurrence and survival-analysis of 11,890 cases with more than 25-year follow-up. Am J Cardiol 85, 1045-1053 (2000).
10. Haimovici, H. & Maier, N. Fate of arotic homografts in canine atherosclerosis. 3. Study of fresh abdominal and thoracic aortic implants into thoracic aorta: Role of tissue susceptibility in atherogenesis. Arch Surg 89, 961-969 (1964).
11. Li, J. et al. Myocardin-related transcription factor B is required in cardiac neural crest for smooth muscle differentiation and cardiovascular development. Proc Natl Acad Sci U S A 102, 8916-8921 (2005).
12. Topouzis, S. & Majesky, M.W. Smooth muscle lineage diversity in the chick embryo. Two types of aortic smooth muscle cell differ in growth and receptor-mediated transcriptional responses to transforming growth factor-beta. Dev Biol 178, 430-445 (1996).
13. Trigueros-Motos, L. et al. Embryological-origin-dependent differences in homeobox expression in adult aorta: role in regional phenotypic variability and regulation of NF-kappaB activity. Arterioscler Thromb Vasc Biol 33, 1248-1256 (2013).
14. Hayflick, L. & Moorhead, P.S. The serial cultivation of human diploid cell strains. Exp Cell Res 25, 585-621 (1961).
15. Beausejour, C.M. et al. Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J 22, 4212-4222 (2003).
16. Dimri, G.P. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92, 9363-9367 (1995).
17. Lee, B.Y. et al. Senescence-associated β-galactosidase is lysosomal β-galactosidase. Aging Cell 5, 187-195 (2006).
18. Matthews, C. et al. Vascular smooth muscle cells undergo telomere-based senescence in human atherosclerosis: effects of telomerase and oxidative stress. Circ Res 99, 156-164 (2006).
19. Minamino, T. et al. Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction. Circulation 105, 1541-1544 (2002).
20. Baker, D.J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232 (2011).
21. Childs, B.G., Li, H. & van Deursen, J.M. Senescent cells: a therapeutic target for cardiovascular disease. J Clin Invest 128, 1217-1228 (2018).
22. Vaziri, H. & Benchimol, S. From telomere loss to p53 induction and activation of a DNA-damage pathway at senescence: the telomere loss/DNA damage model of cell aging. Exp Gerontol 31, 295-301 (1996).
23. Morgan, R.G. et al. Age-related telomere uncapping is associated with cellular senescence and inflammation independent of telomere shortening in human arteries. Am J Physiol Heart Circ Physiol 305, H251-258 (2013).
24. Satoh, M. et al. Association between oxidative DNA damage and telomere shortening in circulating endothelial progenitor cells obtained from metabolic syndrome patients with coronary artery disease. Atherosclerosis 198, 347-353 (2008).
25. Morgan, R.G. et al. Role of arterial telomere dysfunction in hypertension: relative contributions of telomere shortening and telomere uncapping. J Hypertens 32, 1293-1299 (2014).
26. Bernardes de Jesus, B. & Blasco, M.A. Assessing cell and organ senescence biomarkers. Circ Res 111, 97-109 (2012).
27. Ramirez, R.D. et al. Putative telomere-independent mechanisms of replicative aging reflect inadequate growth conditions. Genes Dev 15, 398-403 (2001).
28. Rheinwald, J.G. et al. A two-stage, p16(INK4A)- and p53-dependent keratinocyte senescence mechanism that limits replicative potential independent of telomere status. Mol Cell Biol 22, 5157-5172 (2002).
29. Hewitt, G. et al. Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nat Commun 3, 708 (2012).
30. Fumagalli, M. et al. Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat Cell Biol 14, 355-365 (2012).
31. Campisi, J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120, 513-522 (2005).
32. Watanabe, S., Kawamoto, S., Ohtani, N. & Hara, E. Impact of senescence-associated secretory phenotype and its potential as a therapeutic target for senescence-associated diseases. Cancer Sci 108, 563-569 (2017).
33. Fridovich, I. Superoxide anion radical (O2-.), superoxide dismutases, and related matters. J Biol Chem 272, 18515-18517 (1997).
34. D'Autreaux, B. & Toledano, M.B. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8, 813-824 (2007).
35. Devasagayam, T.P. et al. Free radicals and antioxidants in human health: current status and future prospects. J Assoc Physicians India 52, 794-804 (2004).
36. Winkler, B.S., Boulton, M.E., Gottsch, J.D. & Sternberg, P. Oxidative damage and age-related macular degeneration. Mol Vis 5, 32 (1999).
37. Touyz, R.M. Oxidative stress and vascular damage in hypertension. Curr Hypertens Rep 2, 98-105 (2000).
38. Madamanchi, N.R., Hakim, Z.S. & Runge, M.S. Oxidative stress in atherogenesis and arterial thrombosis: the disconnect between cellular studies and clinical outcomes. J Thromb Haemost 3, 254-267 (2005).
39. Han, D., Williams, E. & Cadenas, E. Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. Biochem J 353, 411-416 (2001).
40. Muller, F. The nature and mechanism of superoxide production by the electron transport chain: Its relevance to aging. J Am Aging Assoc 23, 227-253 (2000).
41. Taniyama, Y. & Griendling, K.K. Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension 42, 1075-1081 (2003).
42. Dusting, G.J., Selemidis, S. & Jiang, F. Mechanisms for suppressing NADPH oxidase in the vascular wall. Mem Inst Oswaldo Cruz 100 Suppl 1, 97-103 (2005).
43. Hayyan, M., Hashim, M.A. & AlNashef, I.M. Superoxide Ion: Generation and Chemical Implications. Chemical Reviews 116, 3029-3085 (2016).
44. Allen, R.G., Tresini, M., Keogh, B.P., Doggett, D.L. & Cristofalo, V.J. Differences in electron transport potential, antioxidant defenses, and oxidant generation in young and senescent fetal lung fibroblasts (WI-38). J Cell Physiol 180, 114-122 (1999).
45. Wolf, F.I. et al. Peripheral lymphocyte 8-OHdG levels correlate with age-associated increase of tissue oxidative DNA damage in Sprague-Dawley rats. Protective effects of caloric restriction. Exp Gerontol 40, 181-188 (2005).
46. CHEN, Q.M. et al. Molecular analysis of H2O2-induced senescent-like growth arrest in normal human fibroblasts: p53 and Rb control G1 arrest but not cell replication. Biochemical Journal 332, 43-50 (1998).
47. Furumoto, K., Inoue, E., Nagao, N., Hiyama, E. & Miwa, N. Age-dependent telomere shortening is slowed down by enrichment of intracellular vitamin C via suppression of oxidative stress. Life Sci 63, 935-948 (1998).
48. Thornberry, N.A. et al. A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356, 768-774 (1992).
49. Schroder, K. & Tschopp, J. The inflammasomes. Cell 140, 821-832 (2010).
50. Palomo, J., Dietrich, D., Martin, P., Palmer, G. & Gabay, C. The interleukin (IL)-1 cytokine family – Balance between agonists and antagonists in inflammatory diseases. Cytokine 76, 25-37 (2015).
51. Beltrami-Moreira, M., Vromman, A., Sukhova, G.K., Folco, E.J. & Libby, P. Redundancy of IL-1 Isoform Signaling and Its Implications for Arterial Remodeling. PLoS One 11, e0152474 (2016).
52. Dinarello, C.A. Biologic basis for interleukin-1 in disease. Blood 87, 2095-2147 (1996).
53. Tamaru, M. et al. Interleukin-1β Induces Tissue- and Cell Type–Specific Expression of Adhesion Molecules In Vivo. Arterioscler Thromb Vasc Biol 18, 1292-1303 (1998).
54. Bevilacqua, M.P., Pober, J.S., Wheeler, M.E., Cotran, R.S. & Gimbrone, M.A., Jr. Interleukin-1 activation of vascular endothelium. Effects on procoagulant activity and leukocyte adhesion. The American journal of pathology 121, 394-403 (1985).
55. Dinarello, C.A. Immunological and Inflammatory Functions of the Interleukin-1 Family. Annual Review of Immunology 27, 519-550 (2009).
56. Libby, P., Ridker, P.M. & Hansson, G.K. Inflammation in atherosclerosis: from pathophysiology to practice. J Am Coll Cardiol 54, 2129-2138 (2009).
57. Galea, J. et al. Interleukin-1β in Coronary Arteries of Patients With Ischemic Heart Disease. Arterioscler Thromb Vasc Biol 16, 1000-1006 (1996).
58. Isoda, K. et al. Deficiency of Interleukin-1 Receptor Antagonist Promotes Neointimal Formation After Injury. Circulation 108, 516-518 (2003).
59. Merhi-Soussi, F. et al. Interleukin-1 plays a major role in vascular inflammation and atherosclerosis in male apolipoprotein E-knockout mice. Cardiovascular Research 66, 583-593 (2005).
60. Shimokawa, H. et al. Chronic treatment with interleukin-1 beta induces coronary intimal lesions and vasospastic responses in pigs in vivo. The role of platelet-derived growth factor. The Journal of Clinical Investigation 97, 769-776 (1996).
61. Chamberlain, J. et al. Interleukin-1β and Signaling of Interleukin-1 in Vascular Wall and Circulating Cells Modulates the Extent of Neointima Formation in Mice. The American Journal of Pathology 168, 1396-1403 (2006).
62. Ridker, P.M., Thuren, T., Zalewski, A. & Libby, P. Interleukin-1beta inhibition and the prevention of recurrent cardiovascular events: rationale and design of the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS). Am Heart J 162, 597-605 (2011).
63. Ridker Paul, M. et al. Effects of Interleukin-1β Inhibition With Canakinumab on Hemoglobin A1c, Lipids, C-Reactive Protein, Interleukin-6, and Fibrinogen. Circulation 126, 2739-2748 (2012).
64. Ridker, P.M. et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. New England Journal of Medicine 377, 1119-1131 (2017).
65. Mittal, M., Siddiqui, M.R., Tran, K., Reddy, S.P. & Malik, A.B. Reactive oxygen species in inflammation and tissue injury. Antioxidants & redox signaling 20, 1126-1167 (2014).
66. Babbar, N. & Casero, R.A., Jr. Tumor necrosis factor-alpha increases reactive oxygen species by inducing spermine oxidase in human lung epithelial cells: a potential mechanism for inflammation-induced carcinogenesis. Cancer Res 66, 11125-11130 (2006).
67. Kojima, H., Kunimoto, H., Inoue, T. & Nakajima, K. The STAT3-IGFBP5 axis is critical for IL-6/gp130-induced premature senescence in human fibroblasts. Cell Cycle 11, 730-739 (2012).
68. Reimann, M. et al. Tumor stroma-derived TGF-beta limits myc-driven lymphomagenesis via Suv39h1-dependent senescence. Cancer Cell 17, 262-272 (2010).
69. Yang, D. et al. Pro-inflammatory cytokines increase reactive oxygen species through mitochondria and NADPH oxidase in cultured RPE cells. Experimental eye research 85, 462-472 (2007).
70. Ross, R. The smooth muscle cell. II. Growth of smooth muscle in culture and formation of elastic fibers. The Journal of cell biology 50, 172-186 (1971).
71. Platas, J. et al. Paracrine effects of human adipose-derived mesenchymal stem cells in inflammatory stress-induced senescence features of osteoarthritic chondrocytes, Vol. 8. (2016).
72. Guadagno, J., Swan, P., Shaikh, R. & Cregan, S.P. Microglia-derived IL-1β triggers p53-mediated cell cycle arrest and apoptosis in neural precursor cells. Cell Death &Amp; Disease 6, e1779 (2015).
73. Yin, Y. et al. Vascular endothelial cells senescence is associated with NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation via reactive oxygen species (ROS)/thioredoxin-interacting protein (TXNIP) pathway. Int J Biochem Cell Biol 84, 22-34 (2017).
74. Haendeler, J. et al. Antioxidants inhibit nuclear export of telomerase reverse transcriptase and delay replicative senescence of endothelial cells. Circ Res 94, 768-775 (2004).
75. Franceschi, C. et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908, 244-254 (2000).
76. Ruparelia, N., Chai, J.T., Fisher, E.A. & Choudhury, R.P. Inflammatory processes in cardiovascular disease: a route to targeted therapies. Nat Rev Cardiol 14, 133-144 (2017).
77. Hernandez-Segura, A. et al. Unmasking Transcriptional Heterogeneity in Senescent Cells. Curr Biol 27, 2652-2660.e2654 (2017).
78. Borodkina, A.V., Deryabin, P.I., Giukova, A.A. & Nikolsky, N.N. "Social Life" of Senescent Cells: What Is SASP and Why Study It? Acta Naturae 10, 4-14 (2018).
79. Mistriotis, P. & Andreadis, S.T. Vascular aging: Molecular mechanisms and potential treatments for vascular rejuvenation. Ageing Res Rev 37, 94-116 (2017).
80. Gilmore, T.D. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25, 6680-6684 (2006).
81. Renard, P. et al. Effects of antioxidant enzyme modulations on interleukin-1-induced nuclear factor kappa B activation. Biochem Pharmacol 53, 149-160 (1997).
82. Tsai, I.C. et al. Reactive oxygen species derived from NADPH oxidase 1 and mitochondria mediate angiotensin II-induced smooth muscle cell senescence. J Mol Cell Cardiol 98, 18-27 (2016).
83. Lee, J.H. & Paull, T.T. Activation and regulation of ATM kinase activity in response to DNA double-strand breaks. Oncogene 26, 7741-7748 (2007).
84. Tanaka, T., Halicka, H.D., Huang, X., Traganos, F. & Darzynkiewicz, Z. Constitutive histone H2AX phosphorylation and ATM activation, the reporters of DNA damage by endogenous oxidants. Cell cycle (Georgetown, Tex.) 5, 1940-1945 (2006).
85. Huang, H. & Manton, K.G. The role of oxidative damage in mitochondria during aging: a review. Front Biosci 9, 1100-1117 (2004).
86. Harman, D. The biologic clock: the mitochondria? J Am Geriatr Soc 20, 145-147 (1972).
87. Zhou, R., Yazdi, A.S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221-225 (2011).
88. Ungvari, Z. et al. Increased mitochondrial H2O2 production promotes endothelial NF-kappaB activation in aged rat arteries. Am J Physiol Heart Circ Physiol 293, H37-47 (2007).
89. Csanyi, G., Taylor, W.R. & Pagano, P.J. NOX and inflammation in the vascular adventitia. Free Radic Biol Med 47, 1254-1266 (2009).
90. Doughan, A.K., Harrison, D.G. & Dikalov, S.I. Molecular mechanisms of angiotensin II-mediated mitochondrial dysfunction: linking mitochondrial oxidative damage and vascular endothelial dysfunction. Circ Res 102, 488-496 (2008).
91. Ginnan, R. et al. NADPH oxidase 4 is required for interleukin-1β-mediated activation of protein kinase Cδ and downstream activation of c-jun N-terminal kinase signaling in smooth muscle. Free radical biology & medicine 54, 125-134 (2013).