| 研究生: |
曾雨平 Tseng, Yu-Ping |
|---|---|
| 論文名稱: |
利用長度調變法量測氧化鋅微米柱的光學增益頻譜 Measuring optical gain spectra of ZnO microrod by Variable Stripe Length method |
| 指導教授: |
徐旭政
Hsu, Hsu-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 氧化鋅微米柱 、變激發長度法 、增益係數 、變溫增益係數 |
| 外文關鍵詞: | ZnO microrod, Variable stripe length method, gain coefficient, gain coefficient of different temperature |
| 相關次數: | 點閱:47 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氧化鋅其天生的寬能隙(3.37 eV)和在室溫下擁有較大的激子束縛能(60 meV),且六角柱體的結構更是一個完美的耳語迴廊共振腔,使得光能夠在共振腔內來回反射並放大,因此氧化鋅成為近期作為近紫外光元件的新寵兒。而不論作為發光二極體、雷射半導體或是光偵測器,都與氧化鋅的增益係數有密切關係,但以往氧化鋅增益係數的量測大多都是以薄膜作為樣品,與常用來做元件的奈米線或是微米柱可能有所差異,因此我們選擇使用氧化鋅微米柱來進行增益係數的量測。
量測使用的是廣泛使用在增益係數測量的變激發長度法,但採用的分析方式和過去不同,利用新的分析方法能夠看到波長範圍更大的增益係數,同時也能夠分析在不同激發長度下的增益係數。另外我們也嘗試改變溫度來觀察增益係數的變化情形,溫度由低溫上升到高溫的過程中,增益頻譜會往低能量的方向移動,同時增益係數的數值也會下降。
As a direct wide bandgap (3.37 eV) semiconductor with a large exciton binding energy (60 meV) at room temperature, and the hexagonal shape can act as the great optical whispering gallery mode (WGM), which relies on total internal reflection, zinc oxide (ZnO) has a high potential for ultraviolet optoelectronic device, especially stimulated emission devices. Recently, ZnO micro-/nanostructures have been employed as not only natural WGM but Fabry–Pérot (FP) microcavity lasers. Here, the optical gain spectra were measured by a modified Variable Stripe Length (VSL) method. We found that the peak position of maximum gain changes with the excitation stripe length. The behind mechanism was discussed. Furthermore, the temperature dependent gain coefficient spectra measurements were performed. With increasing the temperature, the gain spectrum shifts to low energy side and the maximum of gain coefficient decreases.
References
1 S. Nakamura and G. Fasol, The blue laser diode: GaN based light emitters and lasers. (Springer Science & Business Media, 2013).
2 U. K. Mishra, P. Parikh, and Y.-F. Wu, Proceedings of the IEEE 90 (6), 1022 (2002).
3 G. Zhu, J. Li, Z. Tian, J. Dai, Y. Wang, P. Li, and C. Xu, Applied Physics Letters 106 (2), 021111 (2015).
4 X. Li, J. Qi, Q. Zhang, Q. Wang, F. Yi, Z. Wang, and Y. Zhang, Applied Physics Letters 102 (22), 221103 (2013).
5 W.-C. Lai, J.-T. Chen, and Y.-Y. Yang, Optics express 21 (8), 9643 (2013).
6 M. Ding, D. Zhao, B. Yao, B. Zhao, and X. Xu, Chemical Physics Letters 577, 88 (2013).
7 J. Dai, C. X. Xu, and X. W. Sun, Advanced Materials 23 (35), 4115 (2011).
8 R. Schmidt‐Grund, T. Michalsky, M. Wille, and M. Grundmann, physica status solidi (b), 1800462 (2019).
9 T. Nakamura, K. Firdaus, and S. Adachi, Physical Review B 86 (20), 7 (2012).
10 J. Dai, C. Xu, K. Zheng, C. Lv, and Y. Cui, Applied Physics Letters 95 (24), 241110 (2009).
11 J. Lu, C. Xu, F. Li, Z. Yang, Y. Peng, X. Li, M. Que, C. Pan, and Z. L. Wang, ACS nano 12 (12), 11899 (2018).
12 J. H. Lim, C. K. Kang, K. K. Kim, I. K. Park, D. K. Hwang, and S. J. Park, Advanced Materials 18 (20), 2720 (2006).
13 Y. Xu, J. Dai, Z. Shi, B. Long, B. Wu, X. Cai, X. Chu, G. Du, B. Zhang, and J. Yin, Journal of Luminescence 149, 313 (2014).
14 S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, Nature nanotechnology 6 (8), 506 (2011).
15 X. Yang, C.-X. Shan, P.-N. Ni, M.-M. Jiang, A.-Q. Chen, H. Zhu, J.-H. Zang, Y.-J. Lu, and D.-Z. Shen, Nanoscale 10 (20), 9602 (2018).
16 J. Dai, C. Xu, X. Xu, J. Guo, J. Li, G. Zhu, and Y. Lin, Acs Applied Materials & Interfaces 5 (19), 9344 (2013).
17 K. L. Shaklee and R. F. Leheny, Applied Physics Letters 18 (11), 475 (1971).
18 R. Dingle, K. L. Shaklee, R. F. Leheny, and R. B. Zetterstrom, Applied Physics Letters 19 (1), 5 (1971).
19 W. Lu, B. Zhong, and D. Ma, Applied optics 43 (26), 5074 (2004).
20 K. Shaklee, R. Nahory, and R. Leheny, Journal of Luminescence 7, 284 (1973).
21 J. Hvam, Journal of Applied Physics 49 (6), 3124 (1978).
22 J. M. Hvam, Solid State Communications 26 (12), 987 (1978).
23 P. Yu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, Journal of Crystal Growth 184, 601 (1998).
24 Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, Applied Physics Letters 72 (25), 3270 (1998).
25 Y. F. Chen, N. T. Tuan, Y. Segawa, H. Ko, S. Hong, and T. Yao, Applied Physics Letters 78 (11), 1469 (2001).
26 B. J. Kim and K. Kyhm, Journal of the Korean Physical Society 51 (5), 1726 (2007).
27 K. Bohnert, G. Schmieder, and C. Klingshirn, physica status solidi (b) 98 (1), 175 (1980).
28 B. Kim, H. Kim, S. Park, K. Kyhm, and C. Cho, Applied Physics Letters 97 (4), 3 (2010).
29 L. Cerdán, Optics letters 42 (24), 5258 (2017).
30 J. Valenta, I. Pelant, and J. Linnros, Applied Physics Letters 81 (8), 1396 (2002).
31 D. Stevenson, W. Rhines, and H. Maruska, (Google Patents, 1974).
32 I. Akasaki, H. Amano, M. Kito, and K. Hiramatsu, Journal of Luminescence 48, 666 (1991).
33 M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, Advanced Materials 20 (7), 1253 (2008).
34 Y. Sun, J. B. Ketterson, and G. Wong, Applied Physics Letters 77 (15), 2322 (2000).
35 R. Sharma, B. Kim, C. Cho, and K. Kyhm, Journal of Physics D-Applied Physics 42 (13), 7 (2009).
36 A. S. Gadallah, K. Nomenyo, C. Couteau, D. J. Rogers, and G. Lerondel, Applied Physics Letters 102 (17), 4 (2013).
37 Q. Li, X. Li, and J. Zhang, Journal of Alloys and Compounds 572, 175 (2013).
38 S. Xu and Z. L. Wang, Nano Research 4 (11), 1013 (2011).
39 A. Djurišić, A. Ng, and X. Chen, Progress in quantum electronics 34 (4), 191 (2010).
40 M. Niskanen, M. Kuisma, O. Cramariuc, V. Golovanov, T. I. Hukka, N. Tkachenko, and T. T. Rantala, Physical Chemistry Chemical Physics 15 (40), 17408 (2013).
41 B. Lin, Z. Fu, Y. Jia, and G. Liao, Journal of the Electrochemical Society 148 (3), G110 (2001).
42 B. Lin, Z. Fu, and Y. Jia, Applied Physics Letters 79 (7), 943 (2001).
43 Z. Li, M. Jiang, Y. Sun, Z. Zhang, B. Li, H. Zhao, C. Shan, and D. Shen, Nanoscale 10 (39), 18774 (2018).
44 H. Men, N. Tian, and J. Yu, Applied Physics B 124 (2), 24 (2018).
45 D. M. Bagnall, Y. F. Chen, M. Y. Shen, Z. Zhu, T. Goto, and T. Yao, Journal of Crystal Growth 184, 605 (1998).
46 M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, Science 292 (5523), 1897 (2001).
47 E. Hendry, M. Koeberg, and M. Bonn, Physical Review B 76 (4), 045214 (2007).
48 C. Klingshirn, R. Hauschild, J. Fallert, and H. Kalt, Physical Review B 75 (11), 115203 (2007).
49 P. Zu, Z. Tang, G. K. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, Solid State Communications 103 (8), 459 (1997).
50 D. Bagnall, Y. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, Applied Physics Letters 70 (17), 2230 (1997).
51 A. Ohtomo, M. Kawasaki, I. Ohkubo, H. Koinuma, T. Yasuda, and Y. Segawa, Applied Physics Letters 75 (7), 980 (1999).
52 C. Klingshirn, physica status solidi (b) 71 (2), 547 (1975).
53 R. Matsuzaki, H. Soma, K. Fukuoka, K. Kodama, A. Asahara, T. Suemoto, Y. Adachi, and T. Uchino, Physical Review B 96 (12), 8 (2017).
54 D. Bagnall, Y. Chen, Z. Zhu, T. Yao, M. Shen, and T. Goto, Applied Physics Letters 73 (8), 1038 (1998).
55 C.-F. Du, C.-H. Lee, C.-T. Cheng, K.-H. Lin, J.-K. Sheu, and H.-C. Hsu, Nanoscale research letters 9 (1), 446 (2014).
56 H.-C. Hsu, G.-M. Hsu, Y.-s. Lai, Z. C. Feng, S.-Y. Tseng, A. Lundskog, U. Forsberg, E. Janzén, K.-H. Chen, and L.-C. Chen, Applied Physics Letters 101 (12), 121902 (2012).
57 C.-T. Chien, M.-C. Wu, C.-W. Chen, H.-H. Yang, J.-J. Wu, W.-F. Su, C.-S. Lin, and Y.-F. Chen, Applied Physics Letters 92 (22), 223102 (2008).
58 A. Khan, J. Pak. Mater. Soc 4, 5 (2010).
59 Y.-D. Chen, T. H.-B. Ngo, Y.-C. Chang, D.-J. Lin, and H.-C. Hsu, JOSA B 35 (9), 2228 (2018).
60 L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and d. F. Priolo, Nature 408 (6811), 440 (2000).
61 H. Priller, J. Bruckner, T. Gruber, G. Klingshirn, H. Kalt, S. X. Waag, H. J. Ko, and T. Yao, Physica Status Solidi B-Basic Research 241 (3), 587 (2004).
62 C. Lange, M. Schwalm, B. Metzger, and S. Chatterjee, Journal of Applied Physics 108 (10), 103119 (2010).
63 X. Zhang, Z. Tang, M. Kawasaki, A. Ohtomo, and H. Koinuma, Journal of Crystal Growth 259 (3), 286 (2003).
64 Z. Tang, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, Journal of Crystal Growth 287 (1), 169 (2006).
65 P.-H. Dupont, C. Couteau, D. Rogers, F. Hosseini Téhérani, and G. Lerondel, Applied Physics Letters 97 (26), 261109 (2010).
66 H.-C. Chen, M.-J. Chen, M.-K. Wu, Y.-C. Cheng, and F.-Y. Tsai, IEEE Journal of Selected Topics in Quantum Electronics 14 (4), 1053 (2008).
67 Y. P. Varshni, Physica 34 (1), 149 (1967).