簡易檢索 / 詳目顯示

研究生: 陳俞吟
Chen, Yu-Yin
論文名稱: 以擔載氧化鎵之奈米碳管合成具介孔之ZSM-5觸媒與其於甲醇轉化為芳香烴之應用
Gallium-Immobilized Carbon Nanotubes as Solid Templates for the Synthesis of Hierarchical Ga/ZSM-5 in Methanol Aromatization
指導教授: 林裕川
Lin, Yu-Chuan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 98
中文關鍵詞: 芳香族奈米碳管甲醇ZSM-5
外文關鍵詞: Aromatic, gallium, carbon nanotube, methanol
相關次數: 點閱:104下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以擔載氧化鎵之奈米碳管(Ga/CNTs)為模板,並以蒸氣輔助結晶法(steam-assisted crystallization,SAC)合成多級孔的Ga/ZSM-5,並與含浸法製備的Ga/ZSM-5及多級孔Ga/ZSM-5進行比較,探討介孔和不同擔載鎵的方式對甲醇芳香化的影響。結果顯示,以CNTs(或Ga/CNTs)為模板所衍生的介孔構造可降低反應物和產物於微孔內的質傳阻力,進而提升芳香族的產率和延長觸媒的壽期。然而,以Ga/CNTs為模板所合成的Ga/ZSM-5,不僅能生成介孔,亦具有良好的鎵分散性及脫氫活性,其原因為較多的(GaO)+能和布朗斯特酸之間行協同效應(Synergetic effect)進而促進甲醇芳香化,於500 oC下的芳香族產率達73%,遠高於其他方式所合成的ZSM-5的產率。一系列的觸媒物化性鑑定,如XRD、BET、SEM、TEM、NMR、ICP、NH3-TPD、H2-TPR、Pyridine-IR、MeOH-TPSR等,將在本論文中探討。

    Hierarchical Ga/ZSM-5 catalysts were synthesized by using a one-pot process of
    combined hard-templating and steam-assisted conversion. Compared with Ga-incorporated ZSM-5 made by impregnation and by sequential CNTs templating and impregnation, hierarchical Ga/ZSM-5 had a moderate mesoporosity and possibly a high concentration of (GaO)+-Brønsted acid site. The mesoporosity could reduce the mass transfer resistance of products in the porosity. Moreover, the synergy effect between (GaO)+-Brønsted acid site enhances the aromatization activity.Among prepared catalysts, hierarchical Ga/ZSM-5 was the most effective catalyst in methanol aromatization. The aromatics yield of 72.6% was achieved in MTA at 500 oC. All the prepared catalysts were characterized using various techniques including XRD, nitrogen adsorption–desorption, SEM, TEM, NMR, ICP, NH3-TPD, H2-TPR, Pyridine-IR, MeOH-TPSR, TGA.

    目錄 摘要 I 英文延伸摘要 II 誌謝 VIII 表目錄 XII 圖目錄 XIII 第一章 前言 1 第二章 文獻回顧 3 2.1沸石觸媒特性 3 2.2甲醇轉化為芳香族之反應機制 8 2.3沸石觸媒改質之研究 14 第三章 實驗 19 3.1 X光繞射儀(XRD) 19 3.2比表面積及孔徑分析儀 21 3.3高解析度穿透式電子顯微鏡(HR-TEM) 23 3.4高解析度掃描式電子顯微鏡(HR-SEM) 24 3.5感應耦合電漿質譜分析儀(ICP-MS) 25 3.6固態核磁共振儀(NMR) 26 3.7自動式化學吸脫附儀 28 3.7.1氨氣程序升溫脫附(NH3-TPD) 29 3.7.2異丙胺程序升溫脫附(Isopropylamine-TPD) 30 3.7.3氫氣程序升溫還原(H2-TPR) 32 3.7.4程序升溫表面反應(TPSR) 32 3.8紅外線吸收光譜(FTIR) 39 3.8.1觸媒之紅外線吸收光譜 40 3.8.2吡啶吸附之紅外線吸收光譜(Py-IR) 40 3.9 X光光電子能譜(XPS) 43 3.10熱重分析儀(TGA) 45 3.11氣相層析儀(GC) 46 3.12產物定性與定量分析 48 3.13藥品與實驗設備 51 3.14觸媒的合成及製備 54 3.14.1 ZSM-5製備 54 3.14.2以Ga/CNTs為模板的多級孔Ga/ZSM-5和以CNTs為模板的多級孔ZSM-5之製備 54 3.14.3 Ga/ZSM-5和多級孔的Ga/ZSM-5之觸媒製備 55 3.15觸媒MTA反應性及壽期測試 56 第四章 結果與討論 57 4.1物理性質鑑定 57 4.1.1奈米碳管(CNTs)之熱重分析 57 4.1.2 Ga/CNTs之氫氣程溫還原 58 4.1.3觸媒組成分析(ICP-AES) 59 4.1.4觸媒之XRD鑑定 59 4.1.5觸媒的表面形貌鑑定(SEM和TEM) 60 4.1.6觸媒氮氣等溫吸附及脫附曲線 64 4.1.7觸媒27Al NMR鑑定結果 67 4.1.8觸媒29Si NMR鑑定結果 68 4.1.9觸媒之紅外線光譜 69 4.2 化學性質鑑定 70 4.2.1觸媒氫氣程溫還原(H2-TPR) 70 4.2.2觸媒氨氣與異丙胺程溫脫附 (NH3-TPD & IPA-TPD) 71 4.2.3吸附吡啶觸媒之紅外光譜(Pyridine-IR) 75 4.2.4觸媒之Ga 2p軌域X射線光電子能譜(XPS) 77 4.2.5甲醇程溫表面反應(MeOH-TPSR) 78 4.2.6觸媒於甲醇轉化為芳香族之反應性結果 81 4.2.7觸媒壽期測試及積碳 85 第五章 結論 88 第六章 未來方向 89 參考資料 90   表目錄 表2- 1 沸石觸媒之相關反應途徑 7 表2- 2甲醇轉化觸媒與其操作條件和反應性之比較 10 表2- 3 改質ZSM-5於MTA反應研究結果 18 表3- 1實驗藥品與材料 51 表3- 2實驗設備之名稱 53 表4- 1 觸媒組成分析 59 表4- 2觸媒之氮氣吸脫附詳細結果 66 表4- 3觸媒之路易斯酸與布朗斯特酸酸量結果 72 表4- 4觸媒之路易斯酸與布朗斯特酸酸量結果(pyridine-IR) 75 表4- 5觸媒於450 oC和500 oC之MTA反應結果(轉化率100%) 83   圖目錄 圖1- 1 2014年至2019年世界甲醇的生產與需求變化 1 圖2- 1不同zeolites之結構示意圖 5 圖2- 2沸石觸媒在不同孔洞選擇性的反應路徑 5 圖2- 3反應物動力學直徑與觸媒孔洞比較之示意圖 6 圖2- 4沸石觸媒之Lewis acid site及Brønsted acid site示意圖 6 圖2- 5 MTA之反應途徑 8 圖2- 6 MTH之碳池機制 11 圖2- 7 HZSM-5行MTH雙循環反應機制 12 圖2- 8 HZSM-5於450 oC下的滯留時間與轉化率的關係圖 13 圖2- 9奈米尺徑和多級孔的沸石觸媒之合成方式示意圖 14 圖3- 1布拉格繞射之示意圖 20 圖3- 2 Micromeritics, ASAP2020 比表面積及孔徑分析儀 22 圖3- 3 JEM-2100F /JEOL Co.高解析穿透式電子顯微鏡 23 圖3- 4掃描式電子顯微鏡內部構造 24 圖3- 5焰炬管示意圖 26 圖3- 6在(無)磁場下原子核自旋情形 27 圖3- 7 AutoChem II 2920 自動化學吸脫附儀 28 圖3- 8自動式化學吸脫附儀結構示意圖 29 圖3- 9異丙胺於布朗斯特酸性點的分解反應 31 圖3- 10 ThermoStar GSD 320T, Pfeiffer Vacuum 四極柱質譜儀 31 圖3- 11紅外吸收光譜與其對應的分子之結構振動 40 圖3- 12 Thermo Scientific Nicolet iS50 傅立葉轉換紅外線光譜儀 41 圖3- 13原位紅外光石英池之示意圖 42 圖3- 14 X光電子能譜儀之示意圖 44 圖3- 15 TA Instruments Q600 SDT 同步熱分析儀 45 圖3- 16火焰離子偵測器示意圖 46 圖3- 17惠斯同電橋示意圖 47 圖3- 18碳氫化合物以火焰離子偵測器分析之GC圖譜 50 圖4- 1酸洗後之奈米碳管之熱重分析圖譜 57 圖4- 2 Ga/CNTs氫氣程溫還原圖譜 58 圖4- 3觸媒之XRD繞射圖譜 60 圖4- 4觸媒鍛燒後的SEM和TEM圖像 62 圖4- 5觸媒鍛燒前的SEM和TEM圖像 63 圖4- 6 (a) CNTs和(b) Ga/CNTs的TEM圖像 63 圖4- 7觸媒的氮氣等溫吸脫附曲線圖 65 圖4- 8觸媒BJH孔徑分布圖 65 圖4- 9觸媒27Al NMR 圖譜 67 圖4- 10觸媒29Si NMR 圖譜 68 圖4- 11觸媒之紅外線光譜 69 圖4- 12觸媒之氫氣程溫還原圖譜 71 圖4- 13觸媒之氨氣程溫脫附圖譜 73 圖4- 14觸媒之異丙胺程溫脫附圖譜 74 圖4- 15觸媒於350oC之Pyridine-IR圖譜 76 圖4- 16觸媒之Ga 2p軌域X射線光電子能譜 77 圖4- 17觸媒之甲醇程溫表面反應之質譜儀訊號圖譜 79 圖4- 18物理混合之觸媒(β-Ga2O3 & CNT-HZ)的甲醇程溫表面 80 圖4- 19觸媒於450 oC MTA反應之GC圖譜 84 圖4- 20觸媒於500 oC下之MTA反應壽期測試 86 圖4- 21反應後各觸媒之熱重分析圖譜 87 圖4- 22反應後各觸媒熱重分析之一階微分圖譜 87

    參考資料
    1. Olah, G.A., Beyond oil and gas: the methanol economy. Angewandte Chemie International Edition, 2005. 44(18): p. 2636-2639.
    2. Choudhary, V.R., et al., Characterization of coke on H-gallosilicate (MFI) propane aromatization catalyst.: Influence of coking conditions on nature and removal of coke. Microporous and Mesoporous Materials, 1998. 21(1): p. 91-101.
    3. Schmidt, I., et al., Carbon nanotube templated growth of mesoporous zeolite single crystals. Chemistry of Materials, 2001. 13(12): p. 4416-4418.
    4. Flores, C., et al., Direct production of iso-paraffins from syngas over hierarchical cobalt-ZSM-5 nanocomposites synthetized by using carbon nanotubes as sacrificial templates. ChemCatChem, 2018. 10(10): p. 2291-2299.
    5. Liu, H., et al., A comparison study of mesoporous Mo/H-ZSM-5 and conventional Mo/H-ZSM-5 catalysts in methane non-oxidative aromatization. Fuel Processing Technology, 2012. 96: p. 195-202.
    6. Zang, Y., et al., The direct synthesis of Zn-incorporated nanosized H-ZSM-5 zeolites using ZIF-8 as a template for enhanced catalytic performance. CrystEngComm, 2017. 19(23): p. 3156-3166.
    7. Pan, D., et al., A highly active and stable Zn@C/HZSM-5 catalyst using Zn@C derived from ZIF-8 as a template for conversion of glycerol to aromatics. Catalysis Science & Technology, 2019. 9(3): p. 739-752.
    8. Weitkamp, J., Zeolites and catalysis. Solid State Ionics, 2000. 131(1-2): p. 175-188.
    9. Stöcker, M., Methanol-to-hydrocarbons: catalytic materials and their behavior1. Microporous and Mesoporous Materials, 1999. 29(1-2): p. 3-48.
    10. Chang, C.D., A.J. Silvestri, and R.L. Smith, Production of gasoline hydrocarbons. 1975, United States Patent.
    11. Chang, C.D. and A.J. Silvestri, The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts. Journal of Catalysis, 1977. 47(2): p. 249-259.
    12. Dejaifve, P., et al., Reaction pathways for the conversion of methanol and olefins on H-ZSM-5 zeolite. Journal of Catalysis, 1980. 63(2): p. 331-345.
    13. Inoue, Y., K. Nakashiro, and Y. Ono, Selective conversion of methanol into aromatic hydrocarbons over silver-exchanged ZSM-5 zeolites. Microporous Materials, 1995. 4(5): p. 379-383.
    14. Robinson, J.G., D.I. Barnes, and A.M. Carswell, Alumina and/or silica catalysts supported on microporous glass. 1983, United States Patents.
    15. Parker, L.M. and D.M. Bibby, Synthesis and some properties of two novel zeolites, KZ-1 and KZ-2. Zeolites, 1983. 3(1): p. 8-11.
    16. Chao, K.-j., et al., Temperature-programmed desorption studies on ZSM—5 zeolites. Zeolites, 1984. 4(1): p. 2-4.
    17. Cęckiewicz, S., Conversion of methanol into light hydrocarbons on erionite–offretite (T) zeolite. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1984. 80(11): p. 2989-2998.
    18. Itoh, H., et al., Role of acid property of various zeolites in the methanol conversion to hydrocarbons. J. Catal, 1984. 85(2): p. 521-526.
    19. Xu, Y., et al., An investigation into the conversion of methanol to hydrocarbons over a SAPO-34 catalyst using magic-angle-spinning NMR and gas chromatography. Catalysis Letters, 1990. 4(3): p. 251-260.
    20. Ravishankar, R., et al., Characterization and catalytic properties of zeolite MCM-22. Microporous Materials, 1995. 4(1): p. 83-93.
    21. Mikkelsen, Ø. and S. Kolboe, The conversion of methanol to hydrocarbons over zeolite H-beta. Microporous and Mesoporous Materials, 1999. 29(1): p. 173-184.
    22. Dahl, I.M. and S. Kolboe, On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34: I. Isotopic labeling studies of the co-reaction of ethene and methanol. Journal of Catalysis, 1994. 149(2): p. 458-464.
    23. Dahl, I.M. and S. Kolboe, On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34: 2. Isotopic labeling studies of the co-reaction of propene and methanol. Journal of Catalysis, 1996. 161(1): p. 304-309.
    24. Olsbye, U., et al., Conversion of methanol to hydrocarbons: How zeolite cavity and pore size controls product selectivity. Angewandte Chemie International Edition, 2012. 51(24): p. 5810-5831.
    25. Koohsaryan, E. and M. Anbia, Nanosized and hierarchical zeolites: A short review. Chinese Journal of Catalysis, 2016. 37(4): p. 447-467.
    26. Schmidt, F., et al., Carbon templated SAPO-34 with improved adsorption kinetics and catalytic performance in the MTO-reaction. Microporous and Mesoporous Materials, 2012. 164: p. 214-221.
    27. Tang, K. and X. Hong, Carbon nanotube templated growth of nano-crystallinity ZSM-5. Advanced Materials Research, 2011. 299-300: p. 1020-1023.
    28. Mohammadparast, F., R. Halladj, and S. Askari, The synthesis of nano-sized ZSM-5 zeolite by dry gel conversion method and investigating the effects of experimental parameters by Taguchi experimental design. Journal of Experimental Nanoscience, 2018. 13(1): p. 160-173.
    29. Qiu, Y., et al., Different roles of CNTs in hierarchical HZSM-5 synthesis with hydrothermal and steam-assisted crystallization. RSC Advances, 2015. 5(95): p. 78238-78246.
    30. Conte, M., et al., Modified zeolite ZSM-5 for the methanol to aromatics reaction. Catalysis Science & Technology, 2012. 2(1): p. 105-112.
    31. Zhang, J., et al., Increasing para-xylene selectivity in making aromatics from methanol with a surface-modified Zn/P/ZSM-5 catalyst. ACS Catalysis, 2015. 5(5): p. 2982-2988.
    32. Ono, Y., Transformation of lower alkanes into aromatic hydrocarbons over ZSM-5 zeolites. Catalysis Reviews, 1992. 34(3): p. 179-226.
    33. Nowak, I., et al., Effect of H2–O2 pre-treatments on the state of gallium in Ga/H-ZSM-5 propane aromatisation catalysts. Applied Catalysis A: General, 2003. 251(1): p. 107-120.
    34. Faro Júnior, A.C., et al., XAFS study of H-ZSM5 catalysts modified with gallium. Catalysis Today, 2008. 133-135: p. 913-918.
    35. Al-Yassir, N., M. Akhtar, and S. Al-Khattaf, Physicochemical properties and catalytic performance of galloaluminosilicate in aromatization of lower alkanes: a comparative study with Ga/HZSM-5. Journal of Porous Materials, 2012. 19(6): p. 943-960.
    36. Dwyer, F.G. and A.B. Schwartz, Katalysator und dessen verwendung Catalyst and its use. 1978, German Patent and Trade Mark Office.
    37. Ono, Y., H. Adachi, and Y. Senoda, Selective conversion of methanol into aromatic hydrocarbons over zinc-exchanged ZSM-5 zeolites. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1988. 84(4): p. 1091-1099.
    38. Wang, J.-y., et al., Conversion of lower alcohols into aromatics over cation-modified HZSM-5 zeolites. Chinese Journal of Catalysis, 1993. 3: p. 012.
    39. Ono, Y., et al., Ag-ZSM-5 as a catalyst for aromatization of alkanes, alkenes, and methanol, in Studies in Surface Science and Catalysis. 1994, Elsevier. p. 1773-1780.
    40. Freeman, D., R.P. Wells, and G.J. Hutchings, Methanol to hydrocarbons: enhanced aromatic formation using a composite Ga2O3–H-ZSM-5 catalyst. Chemical Communications, 2001(18): p. 1754-1755.
    41. Freeman, D., R.P. Wells, and G.J. Hutchings, Conversion of methanol to hydrocarbons over Ga2O3/H-ZSM-5 and Ga2O3/WO3 catalysts. Journal of Catalysis, 2002. 205(2): p. 358-365.
    42. Barthos, R., et al., Aromatization of methanol and methylation of benzene over Mo2C/ZSM-5 catalysts. Journal of Catalysis, 2007. 247(2): p. 368-378.
    43. Lopez-Sanchez, J.A., et al., Reactivity of Ga 2 O 3 clusters on zeolite ZSM-5 for the conversion of methanol to aromatics. Catalysis letters, 2012. 142(9): p. 1049-1056.
    44. Niu, X., et al., Influence of preparation method on the performance of Zn-containing HZSM-5 catalysts in methanol-to-aromatics. Microporous and Mesoporous Materials, 2014. 197: p. 252-261.
    45. Abdelrahman, O.A., et al., Simple quantification of zeolite acid site density by reactive gas chromatography. Catalysis Science & Technology, 2017. 7(17): p. 3831-3841.
    46. Xiao, H., et al., Mechanistic insight to acidity effects of Ga/HZSM-5 on its activity for propane aromatization. RSC Advances, 2015. 5(112): p. 92222-92233.
    47. Ausavasukhi, A., T. Sooknoi, and D.E. Resasco, Catalytic deoxygenation of benzaldehyde over gallium-modified ZSM-5 zeolite. Journal of Catalysis, 2009. 268(1): p. 68-78.
    48. Xiao, H., et al., A highly efficient Ga/ZSM-5 catalyst prepared by formic acid impregnation and in situ treatment for propane aromatization. Catalysis Science & Technology, 2015. 5(8): p. 4081-4090.
    49. Nowak, I., Effect of H2–O2 pre-treatments on the state of gallium in Ga/H-ZSM-5 propane aromatisation catalysts. Applied Catalysis A: General, 2003. 251(1): p. 107-120.
    50. Serrano, D., et al., Molecular and meso-and macroscopic properties of hierarchical nanocrystalline ZSM-5 zeolite prepared by seed silanization. Chemistry of Materials, 2009. 21(4): p. 641-654.
    51. Gao, Y., et al., Modified seeding method for preparing hierarchical nanocrystalline ZSM-5 catalysts for methanol aromatisation. Microporous and Mesoporous Materials, 2016. 226: p. 251-259.
    52. Xue, T., et al., Seed-induced synthesis of mesoporous ZSM-5 aggregates using tetrapropylammonium hydroxide as single template. Microporous and Mesoporous Materials, 2012. 156: p. 97-105.
    53. Groen, J.C. and J. Pérez-Ramı́rez, Critical appraisal of mesopore characterization by adsorption analysis. Applied Catalysis A: General, 2004. 268(1): p. 121-125.
    54. Woolery, G., et al., On the nature of framework Brønsted and Lewis acid sites in ZSM-5. Zeolites, 1997. 19(4): p. 288-296.
    55. Xin, M., et al., Ga Substitution during Modification of ZSM-5 and Its Influences on Catalytic Aromatization Performance. Industrial & Engineering Chemistry Research, 2019. 58(17): p. 6970-6981.
    56. Gil, B., et al., Desilication of ZSM-5 and ZSM-12 zeolites: Impact on textural, acidic and catalytic properties. Catalysis Today, 2010. 152(1-4): p. 24-32.
    57. Chao, K.J., et al., Characterization of incorporated gallium in beta zeolite. Zeolites, 1997. 18(1): p. 18-24.
    58. Otero Areán, C., et al., Characterization of gallosilicate MFI-type zeolites by IR spectroscopy of adsorbed probe molecules. The Journal of Physical Chemistry, 1996. 100(16): p. 6678-6690.
    59. Rane, N., et al., Characterization and reactivity of Ga+ and GaO+ cations in zeolite ZSM-5. Journal of Catalysis, 2006. 239(2): p. 478-485.
    60. Kwak, B. and W. Sachtler, Effect of Ga/proton balance in Ga/HZSM-5 catalysts on C3 conversion to aromatics. Journal of Catalysis, 1994. 145(2): p. 456-463.
    61. Morrison, R. and R. Boyd, Carbanions I. Aldol and claisen condensations. Organic chemistry. 6th ed. Englewood Cliffs, NJ: Prentice Hall, 1992: p. 797-820.
    62. Kofke, T.G., et al., Stoichiometric adsorption complexes in H-ZSM-5, H-ZSM-12, and H-mordenite zeolites. Journal of Catalysis, 1989. 115(1): p. 265-272.
    63. LIU, R.-l., et al., Aromatization of propane over Ga-modified ZSM-5 catalysts. Journal of Fuel Chemistry and Technology, 2015. 43(8): p. 961-969.
    64. Jin, F. and Y. Li, A FTIR and TPD examination of the distributive properties of acid sites on ZSM-5 zeolite with pyridine as a probe molecule. Catalysis Today, 2009. 145(1-2): p. 101-107.
    65. Topsøe, N.-Y., K. Pedersen, and E.G. Derouane, Infrared and temperature-programmed desorption study of the acidic properties of ZSM-5-type zeolites. Journal of Catalysis, 1981. 70(1): p. 41-52.
    66. Hunger, B., et al., Adsorption of methanol on ZSM-5 zeolites. Langmuir, 1997. 13(23): p. 6249-6254.
    67. Jayamurthy, M. and S. Vasudevan, Methanol-to-gasoline (MTG) conversion over ZSM-5. A temperature programmed surface reaction study. Catalysis letters, 1996. 36(1-2): p. 111-114.
    68. Olsbye, U., et al., Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. Angew Chem Int Ed Engl, 2012. 51(24): p. 5810-31.
    69. Hagen, A. and F. Roessner, Ethane to aromatic hydrocarbons: past, present, future. Catalysis Reviews, 2000. 42(4): p. 403-437.
    70. Zhang, Y., et al., Cadmium modified HZSM-5: A highly efficient catalyst for selective transformation of methanol to aromatics. Industrial & Engineering Chemistry Research, 2017. 56(44): p. 12508-12519.
    71. Lai, P.-C., et al., Methanol aromatization over Ga-doped desilicated HZSM-5. RSC Advances, 2016. 6(71): p. 67361-67371.
    72. Lai, P.C., et al., Methanol conversion to aromatics over Ga–supported HZSM‐5 with evolved Meso‐ and Microporosities by desilication. ChemistrySelect, 2016. 1(20): p. 6335-6344.
    73. Qian, W. and F. Wei, Rector technology for methanol to aromatics. Multiphase Reactor Engineering for Clean and Low-Carbon Energy Applications, 2017: p. 295.
    74. Schulz, H., “Coking” of zeolites during methanol conversion: Basic reactions of the MTO-, MTP- and MTG processes. Catal. Today, 2010. 154(3–4): p. 183-194.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE