| 研究生: |
陳俞吟 Chen, Yu-Yin |
|---|---|
| 論文名稱: |
以擔載氧化鎵之奈米碳管合成具介孔之ZSM-5觸媒與其於甲醇轉化為芳香烴之應用 Gallium-Immobilized Carbon Nanotubes as Solid Templates for the Synthesis of Hierarchical Ga/ZSM-5 in Methanol Aromatization |
| 指導教授: |
林裕川
Lin, Yu-Chuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 芳香族 、鎵 、奈米碳管 、甲醇 、ZSM-5 |
| 外文關鍵詞: | Aromatic, gallium, carbon nanotube, methanol |
| 相關次數: | 點閱:104 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以擔載氧化鎵之奈米碳管(Ga/CNTs)為模板,並以蒸氣輔助結晶法(steam-assisted crystallization,SAC)合成多級孔的Ga/ZSM-5,並與含浸法製備的Ga/ZSM-5及多級孔Ga/ZSM-5進行比較,探討介孔和不同擔載鎵的方式對甲醇芳香化的影響。結果顯示,以CNTs(或Ga/CNTs)為模板所衍生的介孔構造可降低反應物和產物於微孔內的質傳阻力,進而提升芳香族的產率和延長觸媒的壽期。然而,以Ga/CNTs為模板所合成的Ga/ZSM-5,不僅能生成介孔,亦具有良好的鎵分散性及脫氫活性,其原因為較多的(GaO)+能和布朗斯特酸之間行協同效應(Synergetic effect)進而促進甲醇芳香化,於500 oC下的芳香族產率達73%,遠高於其他方式所合成的ZSM-5的產率。一系列的觸媒物化性鑑定,如XRD、BET、SEM、TEM、NMR、ICP、NH3-TPD、H2-TPR、Pyridine-IR、MeOH-TPSR等,將在本論文中探討。
Hierarchical Ga/ZSM-5 catalysts were synthesized by using a one-pot process of
combined hard-templating and steam-assisted conversion. Compared with Ga-incorporated ZSM-5 made by impregnation and by sequential CNTs templating and impregnation, hierarchical Ga/ZSM-5 had a moderate mesoporosity and possibly a high concentration of (GaO)+-Brønsted acid site. The mesoporosity could reduce the mass transfer resistance of products in the porosity. Moreover, the synergy effect between (GaO)+-Brønsted acid site enhances the aromatization activity.Among prepared catalysts, hierarchical Ga/ZSM-5 was the most effective catalyst in methanol aromatization. The aromatics yield of 72.6% was achieved in MTA at 500 oC. All the prepared catalysts were characterized using various techniques including XRD, nitrogen adsorption–desorption, SEM, TEM, NMR, ICP, NH3-TPD, H2-TPR, Pyridine-IR, MeOH-TPSR, TGA.
參考資料
1. Olah, G.A., Beyond oil and gas: the methanol economy. Angewandte Chemie International Edition, 2005. 44(18): p. 2636-2639.
2. Choudhary, V.R., et al., Characterization of coke on H-gallosilicate (MFI) propane aromatization catalyst.: Influence of coking conditions on nature and removal of coke. Microporous and Mesoporous Materials, 1998. 21(1): p. 91-101.
3. Schmidt, I., et al., Carbon nanotube templated growth of mesoporous zeolite single crystals. Chemistry of Materials, 2001. 13(12): p. 4416-4418.
4. Flores, C., et al., Direct production of iso-paraffins from syngas over hierarchical cobalt-ZSM-5 nanocomposites synthetized by using carbon nanotubes as sacrificial templates. ChemCatChem, 2018. 10(10): p. 2291-2299.
5. Liu, H., et al., A comparison study of mesoporous Mo/H-ZSM-5 and conventional Mo/H-ZSM-5 catalysts in methane non-oxidative aromatization. Fuel Processing Technology, 2012. 96: p. 195-202.
6. Zang, Y., et al., The direct synthesis of Zn-incorporated nanosized H-ZSM-5 zeolites using ZIF-8 as a template for enhanced catalytic performance. CrystEngComm, 2017. 19(23): p. 3156-3166.
7. Pan, D., et al., A highly active and stable Zn@C/HZSM-5 catalyst using Zn@C derived from ZIF-8 as a template for conversion of glycerol to aromatics. Catalysis Science & Technology, 2019. 9(3): p. 739-752.
8. Weitkamp, J., Zeolites and catalysis. Solid State Ionics, 2000. 131(1-2): p. 175-188.
9. Stöcker, M., Methanol-to-hydrocarbons: catalytic materials and their behavior1. Microporous and Mesoporous Materials, 1999. 29(1-2): p. 3-48.
10. Chang, C.D., A.J. Silvestri, and R.L. Smith, Production of gasoline hydrocarbons. 1975, United States Patent.
11. Chang, C.D. and A.J. Silvestri, The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts. Journal of Catalysis, 1977. 47(2): p. 249-259.
12. Dejaifve, P., et al., Reaction pathways for the conversion of methanol and olefins on H-ZSM-5 zeolite. Journal of Catalysis, 1980. 63(2): p. 331-345.
13. Inoue, Y., K. Nakashiro, and Y. Ono, Selective conversion of methanol into aromatic hydrocarbons over silver-exchanged ZSM-5 zeolites. Microporous Materials, 1995. 4(5): p. 379-383.
14. Robinson, J.G., D.I. Barnes, and A.M. Carswell, Alumina and/or silica catalysts supported on microporous glass. 1983, United States Patents.
15. Parker, L.M. and D.M. Bibby, Synthesis and some properties of two novel zeolites, KZ-1 and KZ-2. Zeolites, 1983. 3(1): p. 8-11.
16. Chao, K.-j., et al., Temperature-programmed desorption studies on ZSM—5 zeolites. Zeolites, 1984. 4(1): p. 2-4.
17. Cęckiewicz, S., Conversion of methanol into light hydrocarbons on erionite–offretite (T) zeolite. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1984. 80(11): p. 2989-2998.
18. Itoh, H., et al., Role of acid property of various zeolites in the methanol conversion to hydrocarbons. J. Catal, 1984. 85(2): p. 521-526.
19. Xu, Y., et al., An investigation into the conversion of methanol to hydrocarbons over a SAPO-34 catalyst using magic-angle-spinning NMR and gas chromatography. Catalysis Letters, 1990. 4(3): p. 251-260.
20. Ravishankar, R., et al., Characterization and catalytic properties of zeolite MCM-22. Microporous Materials, 1995. 4(1): p. 83-93.
21. Mikkelsen, Ø. and S. Kolboe, The conversion of methanol to hydrocarbons over zeolite H-beta. Microporous and Mesoporous Materials, 1999. 29(1): p. 173-184.
22. Dahl, I.M. and S. Kolboe, On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34: I. Isotopic labeling studies of the co-reaction of ethene and methanol. Journal of Catalysis, 1994. 149(2): p. 458-464.
23. Dahl, I.M. and S. Kolboe, On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34: 2. Isotopic labeling studies of the co-reaction of propene and methanol. Journal of Catalysis, 1996. 161(1): p. 304-309.
24. Olsbye, U., et al., Conversion of methanol to hydrocarbons: How zeolite cavity and pore size controls product selectivity. Angewandte Chemie International Edition, 2012. 51(24): p. 5810-5831.
25. Koohsaryan, E. and M. Anbia, Nanosized and hierarchical zeolites: A short review. Chinese Journal of Catalysis, 2016. 37(4): p. 447-467.
26. Schmidt, F., et al., Carbon templated SAPO-34 with improved adsorption kinetics and catalytic performance in the MTO-reaction. Microporous and Mesoporous Materials, 2012. 164: p. 214-221.
27. Tang, K. and X. Hong, Carbon nanotube templated growth of nano-crystallinity ZSM-5. Advanced Materials Research, 2011. 299-300: p. 1020-1023.
28. Mohammadparast, F., R. Halladj, and S. Askari, The synthesis of nano-sized ZSM-5 zeolite by dry gel conversion method and investigating the effects of experimental parameters by Taguchi experimental design. Journal of Experimental Nanoscience, 2018. 13(1): p. 160-173.
29. Qiu, Y., et al., Different roles of CNTs in hierarchical HZSM-5 synthesis with hydrothermal and steam-assisted crystallization. RSC Advances, 2015. 5(95): p. 78238-78246.
30. Conte, M., et al., Modified zeolite ZSM-5 for the methanol to aromatics reaction. Catalysis Science & Technology, 2012. 2(1): p. 105-112.
31. Zhang, J., et al., Increasing para-xylene selectivity in making aromatics from methanol with a surface-modified Zn/P/ZSM-5 catalyst. ACS Catalysis, 2015. 5(5): p. 2982-2988.
32. Ono, Y., Transformation of lower alkanes into aromatic hydrocarbons over ZSM-5 zeolites. Catalysis Reviews, 1992. 34(3): p. 179-226.
33. Nowak, I., et al., Effect of H2–O2 pre-treatments on the state of gallium in Ga/H-ZSM-5 propane aromatisation catalysts. Applied Catalysis A: General, 2003. 251(1): p. 107-120.
34. Faro Júnior, A.C., et al., XAFS study of H-ZSM5 catalysts modified with gallium. Catalysis Today, 2008. 133-135: p. 913-918.
35. Al-Yassir, N., M. Akhtar, and S. Al-Khattaf, Physicochemical properties and catalytic performance of galloaluminosilicate in aromatization of lower alkanes: a comparative study with Ga/HZSM-5. Journal of Porous Materials, 2012. 19(6): p. 943-960.
36. Dwyer, F.G. and A.B. Schwartz, Katalysator und dessen verwendung Catalyst and its use. 1978, German Patent and Trade Mark Office.
37. Ono, Y., H. Adachi, and Y. Senoda, Selective conversion of methanol into aromatic hydrocarbons over zinc-exchanged ZSM-5 zeolites. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1988. 84(4): p. 1091-1099.
38. Wang, J.-y., et al., Conversion of lower alcohols into aromatics over cation-modified HZSM-5 zeolites. Chinese Journal of Catalysis, 1993. 3: p. 012.
39. Ono, Y., et al., Ag-ZSM-5 as a catalyst for aromatization of alkanes, alkenes, and methanol, in Studies in Surface Science and Catalysis. 1994, Elsevier. p. 1773-1780.
40. Freeman, D., R.P. Wells, and G.J. Hutchings, Methanol to hydrocarbons: enhanced aromatic formation using a composite Ga2O3–H-ZSM-5 catalyst. Chemical Communications, 2001(18): p. 1754-1755.
41. Freeman, D., R.P. Wells, and G.J. Hutchings, Conversion of methanol to hydrocarbons over Ga2O3/H-ZSM-5 and Ga2O3/WO3 catalysts. Journal of Catalysis, 2002. 205(2): p. 358-365.
42. Barthos, R., et al., Aromatization of methanol and methylation of benzene over Mo2C/ZSM-5 catalysts. Journal of Catalysis, 2007. 247(2): p. 368-378.
43. Lopez-Sanchez, J.A., et al., Reactivity of Ga 2 O 3 clusters on zeolite ZSM-5 for the conversion of methanol to aromatics. Catalysis letters, 2012. 142(9): p. 1049-1056.
44. Niu, X., et al., Influence of preparation method on the performance of Zn-containing HZSM-5 catalysts in methanol-to-aromatics. Microporous and Mesoporous Materials, 2014. 197: p. 252-261.
45. Abdelrahman, O.A., et al., Simple quantification of zeolite acid site density by reactive gas chromatography. Catalysis Science & Technology, 2017. 7(17): p. 3831-3841.
46. Xiao, H., et al., Mechanistic insight to acidity effects of Ga/HZSM-5 on its activity for propane aromatization. RSC Advances, 2015. 5(112): p. 92222-92233.
47. Ausavasukhi, A., T. Sooknoi, and D.E. Resasco, Catalytic deoxygenation of benzaldehyde over gallium-modified ZSM-5 zeolite. Journal of Catalysis, 2009. 268(1): p. 68-78.
48. Xiao, H., et al., A highly efficient Ga/ZSM-5 catalyst prepared by formic acid impregnation and in situ treatment for propane aromatization. Catalysis Science & Technology, 2015. 5(8): p. 4081-4090.
49. Nowak, I., Effect of H2–O2 pre-treatments on the state of gallium in Ga/H-ZSM-5 propane aromatisation catalysts. Applied Catalysis A: General, 2003. 251(1): p. 107-120.
50. Serrano, D., et al., Molecular and meso-and macroscopic properties of hierarchical nanocrystalline ZSM-5 zeolite prepared by seed silanization. Chemistry of Materials, 2009. 21(4): p. 641-654.
51. Gao, Y., et al., Modified seeding method for preparing hierarchical nanocrystalline ZSM-5 catalysts for methanol aromatisation. Microporous and Mesoporous Materials, 2016. 226: p. 251-259.
52. Xue, T., et al., Seed-induced synthesis of mesoporous ZSM-5 aggregates using tetrapropylammonium hydroxide as single template. Microporous and Mesoporous Materials, 2012. 156: p. 97-105.
53. Groen, J.C. and J. Pérez-Ramı́rez, Critical appraisal of mesopore characterization by adsorption analysis. Applied Catalysis A: General, 2004. 268(1): p. 121-125.
54. Woolery, G., et al., On the nature of framework Brønsted and Lewis acid sites in ZSM-5. Zeolites, 1997. 19(4): p. 288-296.
55. Xin, M., et al., Ga Substitution during Modification of ZSM-5 and Its Influences on Catalytic Aromatization Performance. Industrial & Engineering Chemistry Research, 2019. 58(17): p. 6970-6981.
56. Gil, B., et al., Desilication of ZSM-5 and ZSM-12 zeolites: Impact on textural, acidic and catalytic properties. Catalysis Today, 2010. 152(1-4): p. 24-32.
57. Chao, K.J., et al., Characterization of incorporated gallium in beta zeolite. Zeolites, 1997. 18(1): p. 18-24.
58. Otero Areán, C., et al., Characterization of gallosilicate MFI-type zeolites by IR spectroscopy of adsorbed probe molecules. The Journal of Physical Chemistry, 1996. 100(16): p. 6678-6690.
59. Rane, N., et al., Characterization and reactivity of Ga+ and GaO+ cations in zeolite ZSM-5. Journal of Catalysis, 2006. 239(2): p. 478-485.
60. Kwak, B. and W. Sachtler, Effect of Ga/proton balance in Ga/HZSM-5 catalysts on C3 conversion to aromatics. Journal of Catalysis, 1994. 145(2): p. 456-463.
61. Morrison, R. and R. Boyd, Carbanions I. Aldol and claisen condensations. Organic chemistry. 6th ed. Englewood Cliffs, NJ: Prentice Hall, 1992: p. 797-820.
62. Kofke, T.G., et al., Stoichiometric adsorption complexes in H-ZSM-5, H-ZSM-12, and H-mordenite zeolites. Journal of Catalysis, 1989. 115(1): p. 265-272.
63. LIU, R.-l., et al., Aromatization of propane over Ga-modified ZSM-5 catalysts. Journal of Fuel Chemistry and Technology, 2015. 43(8): p. 961-969.
64. Jin, F. and Y. Li, A FTIR and TPD examination of the distributive properties of acid sites on ZSM-5 zeolite with pyridine as a probe molecule. Catalysis Today, 2009. 145(1-2): p. 101-107.
65. Topsøe, N.-Y., K. Pedersen, and E.G. Derouane, Infrared and temperature-programmed desorption study of the acidic properties of ZSM-5-type zeolites. Journal of Catalysis, 1981. 70(1): p. 41-52.
66. Hunger, B., et al., Adsorption of methanol on ZSM-5 zeolites. Langmuir, 1997. 13(23): p. 6249-6254.
67. Jayamurthy, M. and S. Vasudevan, Methanol-to-gasoline (MTG) conversion over ZSM-5. A temperature programmed surface reaction study. Catalysis letters, 1996. 36(1-2): p. 111-114.
68. Olsbye, U., et al., Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. Angew Chem Int Ed Engl, 2012. 51(24): p. 5810-31.
69. Hagen, A. and F. Roessner, Ethane to aromatic hydrocarbons: past, present, future. Catalysis Reviews, 2000. 42(4): p. 403-437.
70. Zhang, Y., et al., Cadmium modified HZSM-5: A highly efficient catalyst for selective transformation of methanol to aromatics. Industrial & Engineering Chemistry Research, 2017. 56(44): p. 12508-12519.
71. Lai, P.-C., et al., Methanol aromatization over Ga-doped desilicated HZSM-5. RSC Advances, 2016. 6(71): p. 67361-67371.
72. Lai, P.C., et al., Methanol conversion to aromatics over Ga–supported HZSM‐5 with evolved Meso‐ and Microporosities by desilication. ChemistrySelect, 2016. 1(20): p. 6335-6344.
73. Qian, W. and F. Wei, Rector technology for methanol to aromatics. Multiphase Reactor Engineering for Clean and Low-Carbon Energy Applications, 2017: p. 295.
74. Schulz, H., “Coking” of zeolites during methanol conversion: Basic reactions of the MTO-, MTP- and MTG processes. Catal. Today, 2010. 154(3–4): p. 183-194.