簡易檢索 / 詳目顯示

研究生: 涂逸欣
Tu, Yi-Hsin
論文名稱: 2M-WSe2中弱拓樸絕緣體相與壓力誘發超導的共存
Coexistence of Weak Topological Insulator Phase and Pressure-Induced Superconductivity in 2M-WSe2
指導教授: 張泰榕
Chang, Tay-Rong
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 63
中文關鍵詞: 第一原理計算電子聲子瓦尼爾傅立葉插值弱拓樸絕緣體超導體
外文關鍵詞: first-principle calculation, electron-phonon Wannier interpolation, weak topological insulator, superconductor
相關次數: 點閱:56下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 2M − WSe2最近實驗上在常壓下展現出弱拓樸絕緣體相,同時在實驗中在10.7十億帕時呈現最大的超導臨界溫度7.3克耳文。為了展示在高壓下弱拓樸絕緣體相和超導的共存,我們首先通過能帶結構的軌域貢獻和奇偶分析來表徵2M − WSe2在不同壓力下的拓樸性質,揭示2M − WSe2在0至150千巴範圍內仍然是一個弱拓樸絕緣體。為了研究超導的出現,我們使用了在EPW套件中實現的電子聲子瓦尼爾傅立葉插值。我們發現增強的電子聲子耦合強度λ歸因於在Γ − Y方向上出現的一個能帶袋。

    2M − WSe2 is recently shown to hold the weak topological insulator (WTI) phase at ambient pressure and present the superconductivity with a maximum $T_c=$ 7.3 K at 10.7 GPa, experimentally. To show the coexistence of WTI phase and the emergence of superconductivity at high pressure, we initially characterize the topological properties in 2M − WSe2 as a function of pressure with the orbital-resolved band structure and parity analysis, revealing that 2M − WSe2 is still a WTI at several pressures ranging from 0 to 150 Kbar. To investigate the emergence of superconductivity, we employ the electron-phonon Wannier Fourier interpolation as implemented in EPW package. We find out that the enhanced electron-phonon coupling strength λ is attributed to the emergence of a pocket along the Γ − Y direction.

    中文摘要 i Abstract ii Acknowledgment iii Contents iv List of Figures v 1 Introduction 1 2 Topological Insulator 2 2.1 Bloch's Theorem 2 2.2 Time-reversal symmetry and Kramers Degeneracy 4 2.3 Quantum Spin Hall Insulator 5 2.4 Weak and Strong Topological Insulators in Three Dimensions 8 3 Electron-Phonon Interaction 12 3.1 Density-Functional Perturbation Theory 12 3.2 Phonon in Crystalline solids 15 3.3 Electron-Phonon Interaction using Wannier function 16 3.4 Formalism for Superconductivity 21 4 2M − WSe2 and 2M − WS2 24 4.1 Crystal Structure and Band Structure 24 4.2 Topological Indices and Surface Energy Spectrum 27 4.3 Band Structure and Density of State at various Pressure 31 4.4 Electron-Phonon Coupling Strength and Transition Temperature 32 4.5 The Discrepancy between the Calculated Tc and Experimental Tc 42 4.6 Computational Details 45 5 Conclusion 46 References 47

    C. L. Kane and E. J. Mele, “Z 2 topological order and the quantum spin hall effect,” Physical Review Letters, vol. 95, no. 14, p. 146802, 2005.
    R. Yu, X. L. Qi, A. Bernevig, Z. Fang, and X. Dai, “Equivalent expression of z 2 topological invariant for band insulators using the non-abelian berry connection,” Physical Review B, vol. 84, no. 7, p. 075119, 2011.
    L. Fu and C. L. Kane, “Topological insulators with inversion symmetry,” Physical Review B, vol. 76, no. 4, p. 045302, 2007.
    C.-C. Yeh, T.-H. Do, P.-C. Liao, C.-H. Hsu, Y.-H. Tu, H. Lin, T.-R. Chang, S.-C. Wang, Y.-Y. Gao, Y.-H. Wu, C.-C. Wu, Y. A. Lai, I. Martin, S.-D. Lin, C. Panagopoulos, and C.-T. Liang, “Doubling the superconducting transition temperature of ultraclean wafer-scale aluminum nanofilms,” Phys. Rev. Mater., vol. 7, p. 114801, Nov 2023.
    M. Z. Hasan and C. L. Kane, “Colloquium: topological insulators,” Reviews of Modern Physics, vol. 82, no. 4, p. 3045, 2010.
    L. Fu, C. L. Kane, and E. J. Mele, “Topological insulators in three dimensions,” Physical Review Letters, vol. 98, no. 10, p. 106803, 2007.
    Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, et al., “Observation of a large-gap topological-insulator class with a single dirac cone on the surface,” Nature physics, vol. 5, no. 6, pp. 398–402, 2009.
    B. Yan and S.-C. Zhang, “Topological materials,” Reports on Progress in Physics, vol. 75, no. 9, p. 096501, 2012.
    Y. Ando, “Topological insulator materials,” Journal of the Physical Society of Japan, vol. 82, no. 10, p. 102001, 2013.
    B. Yan, L. Müchler, and C. Felser, “Prediction of weak topological insulators in layered semiconductors,” Physical Review Letters, vol. 109, no. 11, p. 116406, 2012.
    P. Tang, B. Yan, W. Cao, S.-C. Wu, C. Felser, and W. Duan, “Weak topological insulators induced by the interlayer coupling: A first-principles study of stacked bi 2 tei,” Physical Review B, vol. 89, no. 4, p. 041409, 2014.
    C.-C. Liu, J.-J. Zhou, Y. Yao, and F. Zhang, “Weak topological insulators and composite weyl semimetals: β- bi 4 x 4 (x= br, i),” Physical Review Letters, vol. 116, no. 6, p. 066801, 2016.
    P. Zhang, R. Noguchi, K. Kuroda, C. Lin, K. Kawaguchi, K. Yaji, A. Harasawa, M. Lippmaa, S. Nie, H. Weng, et al., “Observation and control of the weak topological insulator state in zrte5,” Nature Communications, vol. 12, no. 1, p. 406, 2021.
    L. Fu and C. L. Kane, “Superconducting proximity effect and majorana fermions at the surface of a topological insulator,” Physical Review Letters, vol. 100, no. 9, p. 096407, 2008.
    J. Alicea, “New directions in the pursuit of majorana fermions in solid state systems,” Reports on Progress in Physics, vol. 75, no. 7, p. 076501, 2012.
    J.-P. Xu, C. Liu, M.-X. Wang, J. Ge, Z.-L. Liu, X. Yang, Y. Chen, Y. Liu, Z.-A. Xu, C.-L. Gao, et al., “Artificial topological superconductor by the proximity effect,” Physical Review Letters, vol. 112, no. 21, p. 217001, 2014.
    F. Lüpke, D. Waters, S. C. de la Barrera, M. Widom, D. G. Mandrus, J. Yan, R. M. Feenstra, and B. M. Hunt, “Proximity-induced superconducting gap in the quantum spin hall edge state of monolayer wte2,” Nature Physics, vol. 16, no. 5, pp. 526–530, 2020.
    S.-Y. Guan, P.-J. Chen, M.-W. Chu, R. Sankar, F. Chou, H.-T. Jeng, C.-S. Chang, and T.-M. Chuang, “Superconducting topological surface states in the noncentrosymmetric bulk superconductor pbtase2,” Science Advances, vol. 2, no. 11, p. e1600894, 2016.
    Y. Fang, J. Pan, D. Zhang, D. Wang, H. T. Hirose, T. Terashima, S. Uji, Y. Yuan, W. Li, Z. Tian, et al., “Discovery of superconductivity in 2m ws2 with possible topological surface states,” Advanced Materials, vol. 31, no. 30, p. 1901942, 2019.
    Y. Yuan, J. Pan, X. Wang, Y. Fang, C. Song, L. Wang, K. He, X. Ma, H. Zhang, F. Huang, et al., “Evidence of anisotropic majorana bound states in 2m-ws2,” Nature Physics, vol. 15, no. 10, pp. 1046–1051, 2019.
    Y. Fang, Q. Dong, J. Pan, H. Liu, P. Liu, Y. Sun, Q. Li, W. Zhao, B. Liu, and F. Huang, “Observation of superconductivity in pressurized 2m wse 2 crystals,” Journal of Materials Chemistry C, vol. 7, no. 28, pp. 8551–8555, 2019.
    L. Xu, Y. Li, Y. Fang, H. Zheng, W. Shi, C. Chen, D. Pei, D. Lu, M. Hashimoto, M. Wang, et al., “Topology hierarchy of transition metal dichalcogenides built from quantum spin hall layers,” Advanced Materials, p. 2300227, 2023.
    R. B. Laughlin, “Quantized hall conductivity in two dimensions,” Physical Review B, vol. 23, no. 10, p. 5632, 1981.
    D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, “Quantized hall conductance in a two-dimensional periodic potential,” Physical Review Letters, vol. 49, no. 6, p. 405, 1982.
    F. D. M. Haldane, “Model for a quantum hall effect without landau levels: Condensed-matter realization of the” parity anomaly”,” Physical Review Letters, vol. 61, no. 18, p. 2015, 1988.
    M. Nakahara, Geometry, topology and physics. CRC press, 2018.
    C. L. Kane and E. J. Mele, “Quantum spin hall effect in graphene,” Physical Review Letters, vol. 95, no. 22, p. 226801, 2005.
    B. A. Bernevig and S.-C. Zhang, “Quantum spin hall effect,” Physical Review Letters, vol. 96, no. 10, p. 106802, 2006.
    A. A. Soluyanov and D. Vanderbilt, “Computing topological invariants without inversion symmetry,” Physical Review B, vol. 83, no. 23, p. 235401, 2011.
    J. E. Moore and L. Balents, “Topological invariants of time-reversal-invariant band structures,” Physical Review B, vol. 75, no. 12, p. 121306, 2007.
    R. Roy, “Topological phases and the quantum spin hall effect in three dimensions,” Physical Review B, vol. 79, no. 19, p. 195322, 2009.
    M. Born, “Born-oppenheimer approximation,” Ann. Phys, vol. 84, pp. 457–484, 1927.
    P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Physical Review, vol. 136, no. 3B, p. B864, 1964.
    W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Physical Review, vol. 140, no. 4A, p. A1133, 1965.
    H. Hellman, “Einführung in die quantenchemie,” Franz Deuticke, Leipzig, vol. 285, 1937.
    R. P. Feynman, “Forces in molecules,” Physical Review, vol. 56, no. 4, p. 340, 1939.
    X. Gonze and C. Lee, “Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory,” Physical Review B, vol. 55, no. 16, p. 10355, 1997.
    S. Baroni, S. De Gironcoli, A. Dal Corso, and P. Giannozzi, “Phonons and related crystal properties from density-functional perturbation theory,” Reviews of Modern Physics, vol. 73, no. 2, p. 515, 2001.
    M. Born and K. Huang, Dynamical theory of crystal lattices. Oxford university press, 1996.
    A. t. MARADUDIN and S. H. Vosko, “Symmetry properties of the normal vibrations of a crystal,” Reviews of Modern Physics, vol. 40, no. 1, p. 1, 1968.
    F. Giustino, M. L. Cohen, and S. G. Louie, “Electron-phonon interaction using wannier functions,” Physical Review B, vol. 76, no. 16, p. 165108, 2007.
    S. Poncé, E. R. Margine, C. Verdi, and F. Giustino, “Epw: Electron–phonon coupling, transport and superconducting properties using maximally localized Wannier functions,” Computer Physics Communications, vol. 209, pp. 116–133, 2016.
    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, et al., “Quantum espresso: a modular and open-source software project for quantum simulations of materials,” Journal of Physics: Condensed Matter, vol. 21, no. 39, p. 395502, 2009.
    N. Marzari, A. A. Mostofi , J. R. Yates, I. Souza, and D. Vanderbilt, “Maximally localized wannier functions: Theory and applications,” Reviews of Modern Physics, vol. 84, no. 4, p. 1419, 2012.
    J. M. Riley, F. Caruso, C. Verdi, L. Duff y, M. D. Watson, L. Bawden, K. Volckaert, G. van der Laan, T. Hesjedal, M. Hoesch, et al., “Crossover from lattice to plasmonic polarons of a spin-polarised electron gas in ferromagnetic euo,” Nature Communications, vol. 9, no. 1, p. 2305, 2018.
    W. H. Sio, C. Verdi, S. Poncé, and F. Giustino, “Polarons from fi rst principles, without supercells,” Physical Review Letters, vol. 122, no. 24, p. 246403, 2019.
    S. Poncé, W. Li, S. Reichardt, and F. Giustino, “First-principles calculations of charge carrier mobility and conductivity in bulk semiconductors and two-dimensional materials,” Reports on Progress in Physics, vol. 83, no. 3, p. 036501, 2020.
    S. Poncé, F. Macheda, E. R. Margine, N. Marzari, N. Bonini, and F. Giustino, “First-principles predictions of hall and drift mobilities in semiconductors,” Physical Review Research, vol. 3, no. 4, p. 043022, 2021.
    J. Noff singer, E. Kioupakis, C. G. Van de Walle, S. G. Louie, and M. L. Cohen, “Phonon-assisted optical absorption in silicon from first principles,” Physical Review Letters, vol. 108, no. 16, p. 167402, 2012.
    E. R. Margine and F. Giustino, “Anisotropic migdal-eliashberg theory using wannier functions,” Physical Review B, vol. 87, no. 2, p. 024505, 2013.
    C. Heil, S. Poncé, H. Lambert, M. Schlipf, E. R. Margine, and F. Giustino, “Origin of superconductivity and latent charge density wave in nbs 2,” Physical Review Letters, vol. 119, no. 8, p. 087003, 2017.
    J. Bardeen, L. N. Cooper, and J. R. Schrieff er, “Theory of superconductivity,” Physical Review, vol. 108, no. 5, p. 1175, 1957.
    P. B. Allen and R. Dynes, “Transition temperature of strong-coupled superconductors reanalyzed,” Physical Review B, vol. 12, no. 3, p. 905, 1975.
    F. Giustino, “Electron-phonon interactions from first principles,” Reviews of Modern Physics, vol. 89, no. 1, p. 015003, 2017.
    Y. Qi, P. G. Naumov, M. N. Ali, C. R. Rajamathi, W. Schnelle, O. Barkalov, M. Hanfl and, S.-C. Wu, C. Shekhar, Y. Sun, et al., “Superconductivity in weyl semimetal candidate mote2,” Nature Communications, vol. 7, no. 1, p. 11038, 2016.
    X.-C. Pan, X. Chen, H. Liu, Y. Feng, Z. Wei, Y. Zhou, Z. Chi, L. Pi, F. Yen, F. Song, et al., “Pressure-driven dome-shaped superconductivity and electronic structural evolution in tungsten ditelluride,” Nature Communications, vol. 6, no. 1, p. 7805, 2015.
    Z. Guguchia, D. J. Gawryluk, M. Brzezinska, S. S. Tsirkin, R. Khasanov, E. Pomjakushina, F. O. von Rohr, J. A. Verezhak, M. Z. Hasan, T. Neupert, et al., “Nodeless superconductivity and its evolution with pressure in the layered dirac semimetal 2m-ws2,” npj Quantum Materials, vol. 4, no. 1, p. 50, 2019.
    G. W. Bryant, “Surface states of ternary semiconductor alloys: effect of alloy fluctuations in one-dimensional models with realistic atoms,” Physical Review B, vol. 31, no. 8, p. 5166, 1985.
    W. McMillan, “Transition temperature of strong-coupled superconductors,” Physical Review, vol. 167, no. 2, p. 331, 1968.
    C.-S. Lian, C. Si, and W. Duan, “Anisotropic full-gap superconductivity in 2m-ws2 topological metal with intrinsic proximity effect,” Nano Letters, vol. 21, no. 1, pp. 709–715, 2020.
    S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, “A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements h-pu,” The Journal of Chemical Physics, vol. 132, no. 15, 2010.
    P. E. Blöchl, “Projector augmented-wave method,” Physical Review B, vol. 50, no. 24, p. 17953, 1994.
    G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Physical Review B, vol. 59, no. 3, p. 1758, 1999.
    A. Dal Corso, “Pseudopotentials periodic table: From h to pu,” Computational Materials Science, vol. 95, pp. 337–350, 2014.
    J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Physical Review Letters, vol. 77, no. 18, p. 3865, 1996.
    M. Methfessel and A. Paxton, “High-precision sampling for brillouin-zone integration in metals,” Physical Review B, vol. 40, no. 6, p. 3616, 1989.
    G. Pizzi, V. Vitale, R. Arita, S. Blügel, F. Freimuth, G. Géranton, M. Gibertini, D. Gresch, C. Johnson, T. Koretsune, et al., “Wannier90 as a community code: new features and applications,” Journal of Physics: Condensed Matter, vol. 32, no. 16, p. 165902, 2020.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE