| 研究生: |
張中昱 Chang, Chung-Yu |
|---|---|
| 論文名稱: |
廢棄菇包與廢塑料之共氣化研究 A study of waste shiitake substrate co-gasification with waste polyethylene |
| 指導教授: |
陳冠邦
Chen, Guan-Bang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2022 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 香菇太空包 、聚乙烯(Polyethylene) 、共氣化 、CO2氣化 、鼓泡式流化床氣化爐 、田口法 |
| 外文關鍵詞: | Waste shiitake substrate, Polyethylene, Co-gasification, CO2 gasification, Bubbling fluidized bed gasifier, Taguchi method |
| 相關次數: | 點閱:125 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
廢棄菇包作為台灣主要的農業廢棄物之一,目前的處理方式是以掩埋與堆肥為主,但因台灣土地有限以及過度的掩埋會造成附近的環境受到破壞,因此需以更有效率且對環境更友善的方式來處理。本研究利用鼓泡式流體化氣化爐作為實驗主體,將廢棄菇包與廢棄塑料(PE)混合進行共氣化實驗。本研究首先對兩個原料進行成分與特性分析,廢PE的高熱值與高揮發份可提高整體產氣熱值,廢菇包則為低熱值、高灰份與高含O量,而廢菇包的存在可降低廢PE進料時容易發生的卡料情況。接著利用熱重分析搭配傅立葉轉換紅外線光譜儀進行分析,觀察廢菇包與廢PE在CO2環境下的熱降解過程以及所產出的氣體,並且計算活化能以及觀察兩者間的協同效應。其結果顯示廢菇包在750℃開始會有Boudouard反應,當混摻比20%時有著最低的活化能,並且廢PE與廢菇包具有協同效應,廢菇包中的酯類與羧酸使其具有C-O、C=O鍵,廢PE則主要以C-H為主。本研究利用1kWth級鼓泡式流體化床進行氣化實驗,使用田口法減少實驗總次數以及找出最佳操作參數(氣化溫度、混摻比、CO2/CO2+H2O、催化劑)。實驗結果說明水蒸氣的加入可以有效提高H2產量(Water-gas)。水蒸氣對C的反應性較高,CO2對C的反應性較低。水蒸氣與CO2的加入可以有效調控H2/CO的比例,使產生的合成氣可以有不同之應用。氣化反應皆為吸熱反應,高溫可以有效提升冷氣體效率(Cold Gas Efficiency, CGE)的比例。廢菇包與廢PE的焦油組成與形成機制有所不同,廢菇包含有雜環芳香族,廢PE含有4環以上之芳香族。廢菇包與廢PE混合時可降低2、3、5類焦油的形成,而添加橄欖石可以有效降低2、3、4類的焦油。
As one of the primary agricultural waste in Taiwan recently, landfill and compost are the main methods to deal with the waste shiitake substrate. However, a more efficient and friendly way for the environment is required because of the limited land space and the pollution from the over-landfill. In this study, a bubbling fluidized gasifier was used as a reactor. And waste shiitake substrate and waste PE were used as feedstock for the co-gasification experiment. The composition and characteristics of the two raw materials were first analyzed. According to the results, the high heating value and high volatile content of waste PE can improve the overall gas quality, while the waste shiitake substrate has a low heating value, high ash content and high O content. The presence of the waste shiitake substrate prevents PE from sticking on the feed tube wall. Subsequently, thermogravimetric analysis with Fourier transform infrared spectrometer was used to analyze the thermal degradation process and the gas produced of the waste shiitake substrate and waste PE in CO2 environment. Meanwhile, activation energy and the synergistic effect between the two feedstock were also calculated. The results show that the waste shiitake substrate has a Boudouard reaction at 750°C, and the activation energy is the lowest when the blending ratio is 20%. Waste PE and the waste shiitake substrate have a synergistic effect, and the esters and carboxylic acids in the waste shiitake substrate make it has C-O and C=O bonds, while waste PE is mainly composed of C-H. This study used a 1kWth-level bubbling fluidized bed for gasification experiments. The Taguchi method was used to reduce the number of experiments and find the optimal operating parameters (gasification temperature, blending ratio, CO2/(CO2+H2O), catalyst). The experimental results show that adding water vapor can effectively increase the production of H2 (Water-gas). Water vapor is more reactive to C, and CO2 is less reactive to C. The addition of water vapor and CO2 can control the ratio of H2/CO so that the generated syngas can be used in different applications. Gasification reactions are all endothermic reactions, and high temperatures can effectively increase the CGE(Cold Gas Efficiency). The tar composition and formation mechanism of waste shiitake substrate and waste PE is different. The waste shiitake substrate contain heterocyclic aromatics, while waste PE contains aromatics with more than 4 rings. The formation of types 2, 3, and 5 tars can be reduced when the waste shiitake substrate is mixed with waste PE, and the formation of types 2, 3, and 4 tars can be reduced by adding olivine.
[1] IEA, Global Energy Review: CO2 Emissions in 2021, in, IEA, Paris, 2022.
[2] IEA, Net Zero by 2050, in, IEA, Paris, 2021.
[3] 經濟部能源局, 能源轉型白皮書, in, 109.
[4] S.K. Thengane, K.S. Kung, A. Gomez-Barea, A.F. Ghoniem, Advances in biomass torrefaction: Parameters, models, reactors, applications, deployment, and market, Progress in Energy and Combustion Science, 93 (2022) 101040.
[5] Y. Wu, H. Wang, H. Li, X. Han, M. Zhang, Y. Sun, X. Fan, R. Tu, Y. Zeng, C.C. Xu, Applications of catalysts in thermochemical conversion of biomass (pyrolysis, hydrothermal liquefaction and gasification): A critical review, Renewable Energy, (2022).
[6] A. Ramos, E. Monteiro, A. Rouboa, Biomass pre-treatment techniques for the production of biofuels using thermal conversion methods–A review, Energy Conversion and Management, 270 (2022) 116271.
[7] S. Zhang, S. Yu, Q. Li, B.A. Mohamed, Y. Zhang, H. Zhou, Insight into the relationship between CO2 gasification characteristics and char structure of biomass, Biomass and Bioenergy, 163 (2022) 106537.
[8] IEA, 2019 年可再生能源, in, IEA, 巴黎, 2019.
[9] IEA, 生物能源發電, in, IEA, 巴黎, 2021.
[10] 行政院農業委員會, 農業廢棄物排放量歷年表, in, 行政院農業委員會, 台灣, 2021.
[11] C.-Y. Wu, C.-H. Liang, Z.-C. Liang, Evaluation of using spent mushroom sawdust wastes for cultivation of auricularia polytricha, Agronomy, 10 (2020) 1892.
[12] E. Atallah, J. Zeaiter, M.N. Ahmad, J.J. Leahy, W. Kwapinski, Hydrothermal carbonization of spent mushroom compost waste compared against torrefaction and pyrolysis, Fuel Processing Technology, 216 (2021) 106795.
[13] H. Jiang, M. Zhang, J. Chen, S. Li, Y. Shao, J. Yang, J. Li, Characteristics of bio-oil produced by the pyrolysis of mixed oil shale semi-coke and spent mushroom substrate, Fuel, 200 (2017) 218-224.
[14] B.C. Williams, J.T. McMullan, S. McCahey, An initial assessment of spent mushroom compost as a potential energy feedstock, Bioresource Technology, 79 (2001) 227-230.
[15] C.-W. Phan, V. Sabaratnam, Potential uses of spent mushroom substrate and its associated lignocellulosic enzymes, Applied Microbiology and Biotechnology, 96 (2012) 863-873.
[16] 行政院農業委員會農業試驗所植物病理組菇類研究室, 太空包栽培後介質再利用, in, 2019.
[17] C. Ryu, K. Finney, V.N. Sharifi, J. Swithenbank, Pelletised fuel production from coal tailings and spent mushroom compost—Part I: Identification of pelletisation parameters, Fuel Processing Technology, 89 (2008) 269-275.
[18] A.M. Pérez-Chávez, L. Mayer, E. Albertó, Mushroom cultivation and biogas production: A sustainable reuse of organic resources, Energy for Sustainable Development, 50 (2019) 50-60.
[19] R. Slezak, L. Krzystek, S. Ledakowicz, Steam gasification of pyrolysis char from spent mushroom substrate, Biomass and Bioenergy, 122 (2019) 336-342.
[20] R. Geyer, J.R. Jambeck, K.L. Law, Production, use, and fate of all plastics ever made, Science Advances, 3 (2017) e1700782.
[21] IEA, 石化產品的未來, in, IEA, 巴黎, 2018.
[22] L.S. Dilkes-Hoffman, S. Pratt, B. Laycock, P. Ashworth, P.A. Lant, Public attitudes towards plastics, Resources, Conservation and Recycling, 147 (2019) 227-235.
[23] S. King, K. Locock, A circular economy framework for plastics: A semi-systematic review, Journal of Cleaner Production, (2022) 132503.
[24] J. Dong, Y. Chi, D. Zou, C. Fu, Q. Huang, M. Ni, Comparison of municipal solid waste treatment technologies from a life cycle perspective in China, Waste Management & Research, 32 (2014) 13-23.
[25] IEA, 氫氣, in, IEA, 巴黎, 2021.
[26] A.V. Abad, P.E. Dodds, Green hydrogen characterisation initiatives: Definitions, standards, guarantees of origin, and challenges, Energy Policy, 138 (2020) 111300.
[27] Z. Navas-Anguita, D. García-Gusano, J. Dufour, D. Iribarren, Revisiting the role of steam methane reforming with CO2 capture and storage for long-term hydrogen production, Science of the total Environment, 771 (2021) 145432.
[28] H. Council, Path to hydrogen competitiveness: A Cost Perspective, (2020).
[29] Z. Navas-Anguita, D. García-Gusano, J. Dufour, D. Iribarren, Prospective techno-economic and environmental assessment of a national hydrogen production mix for road transport, Applied Energy, 259 (2020) 114121.
[30] M. Puig-Arnavat, J.C. Bruno, A. Coronas, Review and analysis of biomass gasification models, Renewable and Sustainable Energy Reviews, 14 (2010) 2841-2851.
[31] J.J. Chew, M. Soh, J. Sunarso, S.-T. Yong, V. Doshi, S. Bhattacharya, Isothermal kinetic study of CO2 gasification of torrefied oil palm biomass, Biomass and Bioenergy, 134 (2020) 105487.
[32] J. Udomsirichakorn, P.A. Salam, Review of hydrogen-enriched gas production from steam gasification of biomass: the prospect of CaO-based chemical looping gasification, Renewable and Sustainable Energy Reviews, 30 (2014) 565-579.
[33] R. Mishra, E. Singh, A. Kumar, A. Ghosh, S.-L. Lo, S. Kumar, Co-gasification of solid waste and its impact on final product yields, Journal of Cleaner Production, (2022) 133989.
[34] G. Perkins, Production of electricity and chemicals using gasification of municipal solid wastes, in: Waste biorefinery, Elsevier, 2020, pp. 3-39.
[35] H.-J. Zhu, J.-H. Liu, L.-F. Sun, Z.-F. Hu, J.-J. Qiao, Combined alkali and acid pretreatment of spent mushroom substrate for reducing sugar and biofertilizer production, Bioresource Technology, 136 (2013) 257-266.
[36] K. Koido, T. Ogura, R. Matsumoto, K. Endo, M. Sato, Spent mushroom substrate performance for pyrolysis, steam co-gasification, and ash melting, Biomass and Bioenergy, 145 (2021) 105954.
[37] J.Y. Yeo, B.L.F. Chin, J.K. Tan, Y.S. Loh, Comparative studies on the pyrolysis of cellulose, hemicellulose, and lignin based on combined kinetics, Journal of the Energy Institute, 92 (2019) 27-37.
[38] H. Yang, R. Yan, H. Chen, D.H. Lee, C. Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis, Fuel, 86 (2007) 1781-1788.
[39] J. Huang, J. Liu, J. Chen, W. Xie, J. Kuo, X. Lu, K. Chang, S. Wen, G. Sun, H. Cai, Combustion behaviors of spent mushroom substrate using TG-MS and TG-FTIR: thermal conversion, kinetic, thermodynamic and emission analyses, Bioresource Technology, 266 (2018) 389-397.
[40] L. Luo, J. Liu, H. Zhang, J. Ma, X. Wang, X. Jiang, TG-MS-FTIR study on pyrolysis behavior of superfine pulverized coal, Journal of Analytical and Applied Pyrolysis, 128 (2017) 64-74.
[41] S. Singh, T. Patil, S.P. Tekade, M.B. Gawande, A.N. Sawarkar, Studies on individual pyrolysis and co-pyrolysis of corn cob and polyethylene: Thermal degradation behavior, possible synergism, kinetics, and thermodynamic analysis, Science of the Total Environment, 783 (2021) 147004.
[42] R.S. Viotto, A.A.D. Maia, F.M. Yamaji, L.C. de Morais, Thermogravimetric investigation of spent shiitake substrate to solid biofuel, The Canadian Journal of Chemical Engineering, 96 (2018) 845-854.
[43] J. Huang, J. Zhang, J. Liu, W. Xie, J. Kuo, K. Chang, M. Buyukada, F. Evrendilek, S. Sun, Thermal conversion behaviors and products of spent mushroom substrate in CO2 and N2 atmospheres: kinetic, thermodynamic, TG and Py-GC/MS analyses, Journal of Analytical and Applied Pyrolysis, 139 (2019) 177-186.
[44] L. Jasiūnas, T.H. Pedersen, S.S. Toor, L.A. Rosendahl, Biocrude production via supercritical hydrothermal co-liquefaction of spent mushroom compost and aspen wood sawdust, Renewable Energy, 111 (2017) 392-398.
[45] X. Yang, D. Jiang, X. Cheng, F. Marrakchi, C. Yuan, Z. He, S. Wang, A. Zheng, Nitrogen transfer mechanism research on the co-pyrolysis macroalgae with polyethylene, Sustainable Energy Technologies and Assessments, 51 (2022) 101886.
[46] M. Ruiz-Montoya, A. Palma, S. Lozano-Calvo, E. Morales, M. Díaz, Kinetic synergistic effect in co-pyrolysis of Eucalyptus globulus with high and low density polyethylene, Energy Reports, 8 (2022) 10688-10704.
[47] Z. Yao, H.J. Seong, Y.-S. Jang, Environmental toxicity and decomposition of polyethylene, Ecotoxicology and Environmental Safety, 242 (2022) 113933.
[48] M. Mojaver, T. Azdast, R. Hasanzadeh, Assessments of key features and Taguchi analysis on hydrogen rich syngas production via gasification of polyethylene, polypropylene, polycarbonate and polyethylene terephthalate wastes, International Journal of Hydrogen Energy, 46 (2021) 29846-29857.
[49] I. Janajreh, I. Adeyemi, S. Elagroudy, Gasification feasibility of polyethylene, polypropylene, polystyrene waste and their mixture: Experimental studies and modeling, Sustainable Energy Technologies and Assessments, 39 (2020) 100684.
[50] J. Li, K.R.G. Burra, Z. Wang, X. Liu, A.K. Gupta, Co-gasification of high-density polyethylene and pretreated pine wood, Applied Energy, 285 (2021) 116472.
[51] A. Zaker, Z. Chen, M. Zaheer-Uddin, J. Guo, Co-pyrolysis of sewage sludge and low-density polyethylene–A thermogravimetric study of thermo-kinetics and thermodynamic parameters, Journal of Environmental Chemical Engineering, 9 (2021) 104554.
[52] M. Campoy, A. Gomez-Barea, F.B. Vidal, P. Ollero, Air–steam gasification of biomass in a fluidised bed: Process optimisation by enriched air, Fuel Processing Technology, 90 (2009) 677-685.
[53] S.S. Siwal, Q. Zhang, C. Sun, S. Thakur, V.K. Gupta, V.K. Thakur, Energy production from steam gasification processes and parameters that contemplate in biomass gasifier–A review, Bioresource Technology, 297 (2020) 122481.
[54] D. Barisano, G. Canneto, F. Nanna, E. Alvino, G. Pinto, A. Villone, M.a. Carnevale, V. Valerio, A. Battafarano, G. Braccio, Steam/oxygen biomass gasification at pilot scale in an internally circulating bubbling fluidized bed reactor, Fuel Processing Technology, 141 (2016) 74-81.
[55] H. Su, E. Kanchanatip, D. Wang, R. Zheng, Z. Huang, Y. Chen, I. Mubeen, M. Yan, Production of H2-rich syngas from gasification of unsorted food waste in supercritical water, Waste Management, 102 (2020) 520-527.
[56] M. Policella, Z. Wang, K.G. Burra, A.K. Gupta, Characteristics of syngas from pyrolysis and CO2-assisted gasification of waste tires, Applied Energy, 254 (2019) 113678.
[57] J. Lee, X. Yang, S.-H. Cho, J.-K. Kim, S.S. Lee, D.C. Tsang, Y.S. Ok, E.E. Kwon, Pyrolysis process of agricultural waste using CO2 for waste management, energy recovery, and biochar fabrication, Applied Energy, 185 (2017) 214-222.
[58] J. Alvarez, G. Lopez, M. Amutio, J. Bilbao, M. Olazar, Evolution of biomass char features and their role in the reactivity during steam gasification in a conical spouted bed reactor, Energy Conversion and Management, 181 (2019) 214-222.
[59] P. Lahijani, Z.A. Zainal, M. Mohammadi, A.R. Mohamed, Conversion of the greenhouse gas CO2 to the fuel gas CO via the Boudouard reaction: A review, Renewable and Sustainable Energy Reviews, 41 (2015) 615-632.
[60] Y.T. Kim, D.K. Seo, J. Hwang, Study of the effect of coal type and particle size on char–CO2 gasification via gas analysis, Energy & Fuels, 25 (2011) 5044-5054.
[61] J. Hunt, A. Ferrari, A. Lita, M. Crosswhite, B. Ashley, A. Stiegman, Microwave-specific enhancement of the carbon–carbon dioxide (Boudouard) reaction, The Journal of Physical Chemistry C, 117 (2013) 26871-26880.
[62] S. Porada, G. Czerski, P. Grzywacz, D. Makowska, T. Dziok, Comparison of the gasification of coals and their chars with CO2 based on the formation kinetics of gaseous products, Thermochimica Acta, 653 (2017) 97-105.
[63] G. Kumari, P. Vairakannu, Laboratory scale studies on CO2 oxy-fuel combustion in the context of underground coal gasification, Journal of CO2 Utilization, 21 (2017) 177-190.
[64] Y. Shen, X. Li, Z. Yao, X. Cui, C.-H. Wang, CO2 gasification of woody biomass: Experimental study from a lab-scale reactor to a small-scale autothermal gasifier, Energy, 170 (2019) 497-506.
[65] C. Franco, F. Pinto, I. Gulyurtlu, I. Cabrita, The study of reactions influencing the biomass steam gasification process☆, Fuel, 82 (2003) 835-842.
[66] P. Parthasarathy, K.S. Narayanan, Hydrogen production from steam gasification of biomass: influence of process parameters on hydrogen yield–a review, Renewable Energy, 66 (2014) 570-579.
[67] S. Ning, S. Jia, H. Ying, Y. Sun, W. Xu, H. Yin, Hydrogen-rich syngas produced by catalytic steam gasification of corncob char, Biomass and Bioenergy, 117 (2018) 131-136.
[68] P. Lv, J. Chang, Z. Xiong, H. Huang, C. Wu, Y. Chen, J. Zhu, Biomass air− steam gasification in a fluidized bed to produce hydrogen-rich gas, Energy & Fuels, 17 (2003) 677-682.
[69] B. Acharya, A. Dutta, P. Basu, An investigation into steam gasification of biomass for hydrogen enriched gas production in presence of CaO, International Journal of Hydrogen Energy, 35 (2010) 1582-1589.
[70] F. Pinto, C. Franco, R. André, M. Miranda, I. Gulyurtlu, I. Cabrita, Co-gasification study of biomass mixed with plastic wastes, Fuel, 81 (2002) 291-297.
[71] I. Ahmed, N. Nipattummakul, A. Gupta, Characteristics of syngas from co-gasification of polyethylene and woodchips, Applied Energy, 88 (2011) 165-174.
[72] T. Yang, K. Hu, R. Li, Y. Sun, X. Kai, Cogasification of typical plastics and rice straw with carbon dioxide, Environmental Progress & Sustainable Energy, 34 (2015) 789-794.
[73] R.A. Moghadam, S. Yusup, Y. Uemura, B.L.F. Chin, H.L. Lam, A. Al Shoaibi, Syngas production from palm kernel shell and polyethylene waste blend in fluidized bed catalytic steam co-gasification process, Energy, 75 (2014) 40-44.
[74] G.-B. Chen, F.-H. Wu, S.-P. Lin, Y.-T. Hsu, T.-H. Lin, A study of sewage sludge Co-gasification with waste shiitake substrate, Energy, 259 (2022) 124991.
[75] F. Guo, X. Jia, S. Liang, N. Zhou, P. Chen, R. Ruan, Development of biochar-based nanocatalysts for tar cracking/reforming during biomass pyrolysis and gasification, Bioresource Technology, 298 (2020) 122263.
[76] L.P. Rabou, R.W. Zwart, B.J. Vreugdenhil, L. Bos, Tar in biomass producer gas, the Energy research Centre of the Netherlands (ECN) experience: an enduring challenge, Energy & Fuels, 23 (2009) 6189-6198.
[77] K. Maniatis, A. Beenackers, Tar protocols. IEA Bioenergy Gasification Task, Biomass and Bioenergy, 18 (2000) 1-4.
[78] C. Li, K. Suzuki, Tar property, analysis, reforming mechanism and model for biomass gasification—An overview, Renewable and Sustainable Energy Reviews, 13 (2009) 594-604.
[79] T. Sharma, D.M. Yepes Maya, F.R. M. Nascimento, Y. Shi, A. Ratner, E.E. Silva Lora, L.J. Mendes Neto, J.C. Escobar Palacios, R. Vieira Andrade, An experimental and theoretical study of the gasification of miscanthus briquettes in a double-stage downdraft gasifier: syngas, tar, and biochar characterization, Energies, 11 (2018) 3225.
[80] U. Wolfesberger, I. Aigner, H. Hofbauer, Tar content and composition in producer gas of fluidized bed gasification of wood—influence of temperature and pressure, Environmental Progress & Sustainable Energy: An Official Publication of the American Institute of Chemical Engineers, 28 (2009) 372-379.
[81] F.L. Chan, A. Tanksale, Review of recent developments in Ni-based catalysts for biomass gasification, Renewable and Sustainable Energy Reviews, 38 (2014) 428-438.
[82] G. Ruoppolo, P. Ammendola, R. Chirone, F. Miccio, H2-rich syngas production by fluidized bed gasification of biomass and plastic fuel, Waste Management, 32 (2012) 724-732.
[83] P. Gu, L. Xing, Y. Wang, J. Feng, X. Peng, A multi-objective parametric study of the claw hydrogen pump for fuel cell vehicles using taguchi method and ANN, International Journal of Hydrogen Energy, 46 (2021) 6680-6692.
[84] R. Hasanzadeh, P. Mojaver, A. Chitsaz, M. Mojaver, M. Jalili, M.A. Rosen, Biomass and low-density polyethylene waste composites gasification: Orthogonal array design of Taguchi technique for analysis and optimization, International Journal of Hydrogen Energy, 47 (2022) 28819-28832.
[85] M.C. Acar, Y.E. Böke, Simulation of biomass gasification in a BFBG using chemical equilibrium model and restricted chemical equilibrium method, Biomass and Bioenergy, 125 (2019) 131-138.
[86] V. Wilk, H. Hofbauer, Co-gasification of plastics and biomass in a dual fluidized-bed steam gasifier: possible interactions of fuels, Energy & Fuels, 27 (2013) 3261-3273.
[87] F. Pinto, R.N. André, C. Carolino, M. Miranda, P. Abelha, D. Direito, N. Perdikaris, I. Boukis, Gasification improvement of a poor quality solid recovered fuel (SRF). Effect of using natural minerals and biomass wastes blends, Fuel, 117 (2014) 1034-1044.
[88] U. Arena, L. Zaccariello, M.L. Mastellone, Fluidized bed gasification of waste-derived fuels, Waste Management, 30 (2010) 1212-1219.
[89] J.A. Sancho, M.P. Aznar, J.M. Toledo, Catalytic air gasification of plastic waste (polypropylene) in fluidized bed. Part I: Use of in-gasifier bed additives, Industrial & Engineering Chemistry Research, 47 (2008) 1005-1010.
[90] J. Gil, M.A. Caballero, J.A. Martín, M.-P. Aznar, J. Corella, Biomass gasification with air in a fluidized bed: effect of the in-bed use of dolomite under different operation conditions, Industrial & Engineering Chemistry Research, 38 (1999) 4226-4235.
[91] S. Shaul, E. Rabinovich, H. Kalman, Generalized flow regime diagram of fluidized beds based on the height to bed diameter ratio, Powder Technology, 228 (2012) 264-271.
[92] G.-B. Chen, F.-H. Wu, T.-L. Fang, H.-T. Lin, Y.-C. Chao, A study of Co-gasification of sewage sludge and palm kernel shells, Energy, 218 (2021) 119532.
[93] P. Basu, Combustion and gasification in fluidized beds, CRC press, 2006.
[94] W.-c. Yang, Handbook of fluidization and fluid-particle systems, CRC press, 2003.
[95] A.M. Sharma, A. Kumar, K.N. Patil, R.L. Huhnke, Fluidization characteristics of a mixture of gasifier solid residues, switchgrass and inert material, Powder Technology, 235 (2013) 661-668.
[96] D. Geldart, Types of gas fluidization, Powder Technology, 7 (1973) 285-292.
[97] J. Schmid, T. Pröll, C. Pfeifer, R. Rauch, H. Hofbauer, Cold flow model investigation on a modified riser with enhanced gas-solid contact–locating the regions of operation in a fluidization regime map, in: Proceedings of the 21st international conference on fluidized bed combustion (FBC), Naples, Italy, 2012.
[98] J. Neeft, S. van Paasen, M. Suomalainen, U. Zielke, G.-J. Buffinga, P. Hasler, J. Good, An outline of R&D work supporting the Tar Guideline.
[99] B. Coda, U. Zielke, M. Suomalainen, H. Knoef, J. Good, T. Liliedahl, C. Unger, L. Ventress, J. Neeft, H. vd Hoek10, Tar measurement standard: a joint effort for the standardisation of a method for measurement of tars and particulates in biomass producer gases, in: Proceedings of the 2nd World Biomass Conference, Biomass for Energy Industry and Climate Protection, 2004, pp. 83.
[100] A. Ramos, E. Monteiro, V. Silva, A. Rouboa, Co-gasification and recent developments on waste-to-energy conversion: A review, Renewable and Sustainable Energy Reviews, 81 (2018) 380-398.
[101] M. Siedlecki, W. De Jong, A.H. Verkooijen, Fluidized bed gasification as a mature and reliable technology for the production of bio-syngas and applied in the production of liquid transportation fuels—a review, Energies, 4 (2011) 389-434.
[102] K.N. Finney, C. Ryu, V.N. Sharifi, J. Swithenbank, The reuse of spent mushroom compost and coal tailings for energy recovery: comparison of thermal treatment technologies, Bioresource Technology, 100 (2009) 310-315.
[103] V. Wilk, H. Hofbauer, Conversion of mixed plastic wastes in a dual fluidized bed steam gasifier, Fuel, 107 (2013) 787-799.
[104] A. Smoliński, K. Wojtacha-Rychter, M. Król, M. Magdziarczyk, J. Polański, N. Howaniec, Co-gasification of refuse-derived fuels and bituminous coal with oxygen/steam blend to hydrogen rich gas, Energy, (2022) 124210.
[105] D.D. Sewu, H. Jung, S.S. Kim, D.S. Lee, S.H. Woo, Decolorization of cationic and anionic dye-laden wastewater by steam-activated biochar produced at an industrial-scale from spent mushroom substrate, Bioresource Technology, 277 (2019) 77-86.
[106] S.S. Lam, X.Y. Lee, W.L. Nam, X.Y. Phang, R.K. Liew, P.N. Yek, Y.L. Ho, N.L. Ma, M.H. Rosli, Microwave vacuum pyrolysis conversion of waste mushroom substrate into biochar for use as growth medium in mushroom cultivation, Journal of Chemical Technology & Biotechnology, 94 (2019) 1406-1415.
[107] K. Burra, A. Gupta, Kinetics of synergistic effects in co-pyrolysis of biomass with plastic wastes, Applied Energy, 220 (2018) 408-418.
[108] J. Chen, J. Zhang, J. Liu, Y. He, F. Evrendilek, M. Buyukada, W. Xie, S. Sun, Co-pyrolytic mechanisms, kinetics, emissions and products of biomass and sewage sludge in N2, CO2 and mixed atmospheres, Chemical Engineering Journal, 397 (2020) 125372.
[109] J. Gulmine, P. Janissek, H. Heise, L. Akcelrud, Polyethylene characterization by FTIR, Polymer Testing, 21 (2002) 557-563.
[110] H. Rajandas, S. Parimannan, K. Sathasivam, M. Ravichandran, L.S. Yin, A novel FTIR-ATR spectroscopy based technique for the estimation of low-density polyethylene biodegradation, Polymer Testing, 31 (2012) 1094-1099.
[111] Q. Liu, Z. Zhong, S. Wang, Z. Luo, Interactions of biomass components during pyrolysis: A TG-FTIR study, Journal of Analytical and Applied Pyrolysis, 90 (2011) 213-218.
[112] M. Sieradzka, A. Mlonka-Mędrala, A. Magdziarz, Comprehensive investigation of the CO2 gasification process of biomass wastes using TG-MS and lab-scale experimental research, Fuel, 330 (2022) 125566.
[113] J. Wu, T. Chen, X. Luo, D. Han, Z. Wang, J. Wu, TG/FTIR analysis on co-pyrolysis behavior of PE, PVC and PS, Waste management, 34 (2014) 676-682.
[114] H. Yuan, H. Fan, R. Shan, M. He, J. Gu, Y. Chen, Study of synergistic effects during co-pyrolysis of cellulose and high-density polyethylene at various ratios, Energy Conversion and Management, 157 (2018) 517-526.
[115] J. Chattopadhyay, T. Pathak, R. Srivastava, A. Singh, Catalytic co-pyrolysis of paper biomass and plastic mixtures (HDPE (high density polyethylene), PP (polypropylene) and PET (polyethylene terephthalate)) and product analysis, Energy, 103 (2016) 513-521.
[116] X. Kai, T. Yang, S. Shen, R. Li, TG-FTIR-MS study of synergistic effects during co-pyrolysis of corn stalk and high-density polyethylene (HDPE), Energy Conversion and Management, 181 (2019) 202-213.
[117] C.N. Arenas, M.V. Navarro, J.D. Martínez, Pyrolysis kinetics of biomass wastes using isoconversional methods and the distributed activation energy model, Bioresource Technology, 288 (2019) 121485.
[118] J. Ceamanos, J. Mastral, A. Millera, M. Aldea, Kinetics of pyrolysis of high density polyethylene. Comparison of isothermal and dynamic experiments, Journal of Analytical and Applied Pyrolysis, 65 (2002) 93-110.
[119] A. Aboulkas, A. El Bouadili, Thermal degradation behaviors of polyethylene and polypropylene. Part I: Pyrolysis kinetics and mechanisms, Energy Conversion and Management, 51 (2010) 1363-1369.
[120] M. Narobe, J. Golob, D. Klinar, V. Francetič, B. Likozar, Co-gasification of biomass and plastics: pyrolysis kinetics studies, experiments on 100 kW dual fluidized bed pilot plant and development of thermodynamic equilibrium model and balances, Bioresource Technology, 162 (2014) 21-29.
[121] Y. Zheng, L. Tao, X. Yang, Y. Huang, C. Liu, Z. Zheng, Study of the thermal behavior, kinetics, and product characterization of biomass and low-density polyethylene co-pyrolysis by thermogravimetric analysis and pyrolysis-GC/MS, Journal of Analytical and Applied Pyrolysis, 133 (2018) 185-197.
[122] R. Chen, S. Zhang, K. Cong, Q. Li, Y. Zhang, Insight into synergistic effects of biomass-polypropylene co-pyrolysis using representative biomass constituents, Bioresource Technology, 307 (2020) 123243.
[123] L.E. Taba, M.F. Irfan, W.A.M.W. Daud, M.H. Chakrabarti, The effect of temperature on various parameters in coal, biomass and CO-gasification: a review, Renewable and Sustainable Energy Reviews, 16 (2012) 5584-5596.
[124] J. He, Z. Yang, S. Xiong, M. Guo, Y. Yan, J. Ran, L. Zhang, Experimental and thermodynamic study of banana peel non-catalytic gasification characteristics, Waste Management, 113 (2020) 369-378.
[125] M. Ajorloo, M. Ghodrat, J. Scott, V. Strezov, Modelling and statistical analysis of plastic biomass mixture co-gasification, Energy, 256 (2022) 124638.
[126] C. Guizani, F.E. Sanz, S. Salvador, Influence of temperature and particle size on the single and mixed atmosphere gasification of biomass char with H2O and CO2, Fuel Processing Technology, 134 (2015) 175-188.
[127] H.J. Chae, J.-H. Kim, S.C. Lee, H.-S. Kim, S.B. Jo, J.-H. Ryu, T.Y. Kim, C.H. Lee, S.J. Kim, S.-H. Kang, Catalytic technologies for CO hydrogenation for the production of light hydrocarbons and middle distillates, Catalysts, 10 (2020) 99.
[128] H.C. Butterman, M.J. Castaldi, CO2 as a carbon neutral fuel source via enhanced biomass gasification, Environmental Science & Technology, 43 (2009) 9030-9037.
[129] S. Valin, L. Bedel, J. Guillaudeau, S. Thiery, S. Ravel, CO2 as a substitute of steam or inert transport gas in a fluidised bed for biomass gasification, Fuel, 177 (2016) 288-295.
[130] F. Pinto, R. André, M. Miranda, D. Neves, F. Varela, J. Santos, Effect of gasification agent on co-gasification of rice production wastes mixtures, Fuel, 180 (2016) 407-416.
[131] S.W. Han, D. Tokmurzin, J.J. Lee, S.J. Park, H.W. Ra, S.J. Yoon, T.-Y. Mun, S.M. Yoon, J.H. Moon, J.G. Lee, Gasification characteristics of waste plastics (SRF) in a bubbling fluidized bed: Use of activated carbon and olivine for tar removal and the effect of steam/carbon ratio, Fuel, 314 (2022) 123102.
[132] U. Arena, F. Di Gregorio, Energy generation by air gasification of two industrial plastic wastes in a pilot scale fluidized bed reactor, Energy, 68 (2014) 735-743.
[133] Z. Yu, M. Dai, M. Huang, S. Fang, J. Xu, Y. Lin, X. Ma, Catalytic characteristics of the fast pyrolysis of microalgae over oil shale: analytical Py-GC/MS study, Renewable Energy, 125 (2018) 465-471.
[134] Y. Lin, Y. Liao, Z. Yu, S. Fang, X. Ma, A study on co-pyrolysis of bagasse and sewage sludge using TG-FTIR and Py-GC/MS, Energy Conversion and Management, 151 (2017) 190-198.
[135] G. Lopez, M. Artetxe, M. Amutio, J. Alvarez, J. Bilbao, M. Olazar, Recent advances in the gasification of waste plastics. A critical overview, Renewable and Sustainable Energy Reviews, 82 (2018) 576-596.
[136] L. Devi, K.J. Ptasinski, F.J. Janssen, Pretreated olivine as tar removal catalyst for biomass gasifiers: investigation using naphthalene as model biomass tar, Fuel Processing Technology, 86 (2005) 707-730.
[137] H. Yu, Z. Zhang, Z. Li, D. Chen, Characteristics of tar formation during cellulose, hemicellulose and lignin gasification, Fuel, 118 (2014) 250-256.
[138] S. Koppatz, C. Pfeifer, H. Hofbauer, Comparison of the performance behaviour of silica sand and olivine in a dual fluidised bed reactor system for steam gasification of biomass at pilot plant scale, Chemical Engineering Journal, 175 (2011) 468-483.
[139] Z.A. El-Rub, E.A. Bramer, G. Brem, Experimental comparison of biomass chars with other catalysts for tar reduction, Fuel, 87 (2008) 2243-2252.
[140] L. Devi, M. Craje, P. Thüne, K.J. Ptasinski, F.J. Janssen, Olivine as tar removal catalyst for biomass gasifiers: Catalyst characterization, Applied Catalysis A: General, 294 (2005) 68-79.
校內:2026-01-04公開