簡易檢索 / 詳目顯示

研究生: 馬凱文
Ma, Kai-Wen
論文名稱: 牡蠣殼製氧化鈣奈米顆粒在二氧化碳吸收的應用
CaO Nanoparticles Derived from Oyster Shells for CO2 Absorption
指導教授: 鄧熙聖
Teng, Hsisheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 101
中文關鍵詞: 牡蠣殼氫氧化鈣二氧化碳捕捉氧化鈣碳酸化反應
外文關鍵詞: Ca(OH)2, CaO, oyster shells, CO2 capture, carbonation
相關次數: 點閱:84下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧化鈣與碳酸鈣的碳酸化/鍛燒程序是一個有效率的捕捉二氧化碳的方法。本研究利用牡蠣殼與商用碳酸鈣所轉換得的氧化鈣粉末進行二氧化碳吸收量的測試。從牡蠣殼轉化得的氧化鈣粉末由平均粒徑53 nm的氧化鈣奈米顆粒所組成,在20% CO2/N2氣體環境下進行持溫650°C進行5小時的二氧化碳吸收,其轉化率可達84%。牡蠣殼所轉化得的氧化鈣粉末擁有9 wt%的雜質含量,與商用碳酸鈣轉化得的氧化鈣結晶粒徑比較,具有較大的氧化鈣結晶粒徑及較小的表面積。利用牡蠣殼所轉化的氧化鈣當吸收劑,在多循環二氧化碳吸收實驗中,於碳酸化與鍛燒程序間插入一個冷卻步驟,對整體的循環再生性與二氧化碳吸收量都有很大的改善。當吸收溫度為750°C時,牡蠣殼所轉化成的氧化鈣的在多循環二氧化碳吸收的總效能明顯優於商用碳酸鈣所轉化成的氧化鈣。利用X光繞射分析,本研究提出一個可能的機構,在牡蠣殼轉化得的氧化鈣內的雜質將在氧化鈣結晶晶界周圍形成過渡區,可抑制或減緩因為鍛燒而造成的晶粒成長以及封存二氧化碳所造成的晶格膨脹。插入的冷卻步驟將可以擴大過渡區的範圍,緩和因封存二氧化碳所造成的晶格錯亂及二氧化碳吸收量的衰退。除此之外,本研究亦將牡蠣殼與商用碳酸鈣所轉換得的氧化鈣粉末進行水合處理,發現到可大幅度增加吸收量與吸收速率,並利用吸收劑的結晶結構解釋其對吸收效率的影響。

    The carbonation/calcination loop of CaO/CaCO3 is an efficient process for CO2 capture. This study investigated the CO2 capture capability of CaO powders derived from oyster shells and reagent-grade CaCO3. The CaO powder from oyster shells calcination consisted of nanoparticles of 53 nm and showed a CO2 absorption conversion as high as 84% at 650°C for 5 hours in 20% CO2/N2.The oyster shell-derived CaO powder had an oxide impurity content as high as 9 wt%, and a larger CaO crystal grain size and smaller specific surface area than the CaO derived from the reagent CaCO3. In cyclic CO2 capture tests, the cyclability and CO2 capacity of the oyster shell-derived CaO was significantly improved by inserting an intermediate cooling step between carbonation and calcination. At a carbonation temperature of 750°C, the overall performance of the oyster shell-derived CaO in cyclic carbonation was superior to that of the CaO from the reagent CaCO3. On the basis of X-ray diffraction analysis, it was suggested that the impurities contained in the oyster shell-derived CaO may have constituted transition zone on the CaO crystal grain boundary to suppress crystal growth in calcination as well as to ease up lattice expansion in CO2 fixation. The intermediate cooling enlarged the transition zone to mitigate lattice dislocations resulting from CO2 fixation and thus the decay in CO2 capacity. In addition, this study also investigated the CO2 capture capability of CaO powders derived from oyster shells and reagent-grade CaCO3 under deionized water hydration. The CO2 capacity and carbonation rate was significantly improved by the hydration of CaO powder. The correlation between the crystalline structure of the sorbents and the absorption performance will be explored.

    總目錄 中文摘要 ………………………………………………………………… I Abstract ………………………………………………………………… II 誌謝 ………………………………………………………………… III 本文目錄 ………………………………………………………………… IV 表目錄 ………………………………………………………………… VI 圖目錄 ………………………………………………………………… VII 本文目錄 第一章 緒論………………………………………………………………… 1 1-1 溫室效應與二氧化碳捕獲技術…………………………………… 1 1-2 二氧化碳捕捉應用於甲烷重組產氫系統………………………… 7 1-3 研究動機…………………………………………………………… 11 第二章 文獻回顧………………………………………………………… 12 2-1 二氧化碳減量……………………………………………………… 12 2-2 吸收劑選擇依據…………………………………………………… 13 2-3 高溫CO2吸收劑:氧化鈣…………………………………………… 16 第三章 實驗部分………………………………………………………… 19 3-1 實驗藥品與設備…………………………………………………… 19 3-1-1 實驗氣體……………………………………………………… 19 3-1-2 實驗藥品……………………………………………………… 19 3-1-3 實驗設備……………………………………………………… 19 3-2 樣品前處理………………………………………………………… 21 3-2-1 CaO吸收劑:鍛燒後之牡蠣殼(oyster shells)………………… 21 3-2-2 CaO吸收劑:鍛燒後之氫氧化鈣Ca(OH)2…………………… 22 3-3 CaO吸收劑特性分析……………………………………………… 24 3-3-1 X光繞射分析 (X-ray Diffraction, XRD)……………………… 24 3-3-2 物理吸附分析 (Brunauer-Emmett-Teller, BET)……… 26 3-3-3 熱重分析儀(Thermal Gravimetric Analyzer, TGA)…………… 34 3-3-4 穿透式電子顯微鏡 (Transmission electron microscope, TEM)…34 3-3-5 掃描式電子顯微鏡(Scanning electron microscopy)………… 35 3-3-6 感應耦合電漿質譜儀(Inductivity coupled plasma-mass spectrometer, ICP-MS)………………………………………… 36 3-4 TGA測試CaO吸收劑CO2捕捉能力……………………………… 37 3-4-1 CaO-Shell測試流程…………………………………………… 37 3-4-2 CaO-Shell階梯式升溫吸收…………………………………… 40 3-4-3 CaO-Shell單循環恆溫吸收…………………………………… 41 3-4-4 CaO-Shell多循環吸收………………………………………… 41 3-4-5 CaO-Shell加水處理成Ca(OH)2測試流程…………………… 42 第四章 結果與討論……………………………………………………… 43 4-1 牡蠣殼—單循環CO2吸收………………………………………… 43 4-1-1 ICP-MS分析牡蠣殼鍛燒後成氧化鈣之元素組成…………… 43 4-1-2 X光繞射(XRD)圖譜與結構分析……………………………… 43 4-1-3 比表面積(BET)分析…………………………………………… 47 4-1-4 掃描式電子顯微鏡(SEM)分析………………………………… 47 4-1-5 穿透式電子顯微鏡(TEM)分析………………………………… 49 4-1-6 氧化鈣高溫CO2吸收性能的測試……………………………… 52 4-2 牡蠣殼—多循環CO2吸收………………………………………… 59 4-2-1 氧化鈣高溫CO2吸收性能的測試…………………………… 59 4-2-2 鈣使用率(Ca utilization)……………………………………… 62 4-2-3 掃描式電子顯微鏡(SEM)分析……………………………… 65 4-2-4 穿透式電子顯微鏡(TEM)分析………………………………… 67 4-2-5 過渡區機構(Transition zone mechanism)……………………… 69 4-2-6 與文獻數據的比較…………………………………………… 73 4-3 加水處理牡蠣殼鍛燒後之氧化鈣—單循環CO2吸收…………… 75 4-3-1 X光繞射(XRD)圖譜與結構分析……………………………… 75 4-3-2 比表面積(BET)分析…………………………………………… 79 4-3-3 掃描式電子顯微鏡(SEM)分析………………………………… 81 4-3-4 穿透式電子顯微鏡(TEM)分析………………………………… 82 4-3-5 氫氧化鈣高溫CO2吸收性能的測試…………………………… 84 第五章 結論……………………………………………………………… 91 5-1 多循環吸收劑 牡蠣殼鍛燒後之氧化鈣…………………………… 91 5-2 新型CO2快速吸收劑 氧化鈣加水處理成氫氧化鈣……………… 92 5-3 建議………………………………………………………………… 92 參考文獻…………………………………………………………………… 93 表目錄 第一章 緒論 表 1-1 CO2封存技術整理............................................................... 6 表 1-2 各路徑選擇對於二氧化碳儲存量之估計........................... 7 第二章 文獻回顧 表 2-1 金屬氧化物和金屬氫氧化物與CO2反應的平衡常數....... 15 表 2-2 常壓下不同溫度時的反應平衡常數................................... 15 表 2-3 金屬碳酸鹽類的熔點數據................................................... 16 第四章 結果與討論 表 4-1 牡蠣殼鍛燒後CaO-Shell ICP-MS……………………… 43 表 4-2 鍛燒後牡蠣殼與商用CaCO3表面積與結晶粒徑的關係… 47 表 4-3 CaO-Shell在不同吸收溫度下5小時的吸收量………… 57 表 4-4 CaO-Shell在不同吸收溫度下1小時的吸收量………… 58 表 4-5 循環次數 vs. 吸收轉化率於循環式CO2吸收測試參數 75 表 4-6 CaO基吸收劑表面積與結晶粒徑的關係……………… 80 表 4-7 CaO-based sorbent在不同條件下之20 min吸收效率… 90 圖目錄 第一章 緒論 圖 1-1 溫室氣體排放量圓餅圖………………………………… 6 第二章 文獻回顧 圖 2-1 CaO吸收劑在碳酸化/鍛燒程序中的結構變化圖……… 17 第三章 實驗部分 圖 3-1 氧化鈣吸收劑製造流程………………………………… 23 圖 3-2 XRD繞射示意圖………………………………………… 25 圖 3-3 固定床反應器…………………………………………… 26 圖 3-4 自動化物理吸附分析儀示意圖………………………… 31 圖 3-5 吸附曲線的六種型態…………………………………… 32 圖 3-6 遲滯曲線的四種型態…………………………………… 33 圖 3-7 圓柱型孔洞示意圖……………………………………… 33 圖 3-8 CaO-Shell利用TGA進行吸收測試之流程……………… 38 圖 3-9 以CaO-Shell與CaO-Reagent進行多循環吸收測試…… 39 圖 3-10 升溫的恆溫吸收程序 溫度vs.時間關係圖……………… 40 第四章 結果與討論 圖 4-1 CaCO3與CaO粉末XRD繞射圖譜……………………… 45 圖 4-2 牡蠣殼、CaO-Shell吸收前後粉末XRD繞射圖譜……… 46 圖 4-3 CaO specimens掃描式電子顯微鏡表面觀察…………… 48 圖 4-4 牡蠣殼與商用CaCO3 不同狀態下之TEM圖…………… 50 圖 4-5 牡蠣殼鍛燒後轉化成CaO-Shell之HRTEM與電子選區繞射圖…………………………………………………… 51 圖 4-6 牡蠣殼與商用碳酸鈣在升溫速率30°C/min,50cm3/min純氮氣(N2)下的熱重分析圖……………………………… 54 圖 4-7 CaO-Shell在20% CO2/N2 (50 cm3/min)下,從室溫階梯式升溫至850°C碳酸化重量增加vs.時間圖…………… 55 圖 4-8 CaO-Shell在20% CO2/N2 (50 cm3/min)下,從室溫階梯式升溫至850°C碳酸化重量增加vs.溫度圖…………… 56 圖 4-9 CaO-Shell在20% CO2/N2 (50 cm3/min)下,不同吸收溫度5小時碳酸化重量增加vs.時間……………………… 57 圖 4-10 CaO-Shell在20% CO2/N2 (50 cm3/min)下,不同吸收溫度1小時碳酸化重量增加vs.時間……………………… 58 圖 4-11 CaO specimens在sequence A和B下的多循環碳酸化/鍛燒程序………………………………………………… 61 圖 4-12 CaO specimens在sequence A和B下的多循環碳酸化/鍛燒程序………………………………………………… 62 圖 4-13 CaO-Shell與CaO-Reagent在多循環系統中的比較…… 64 圖 4-14 CaO specimens掃描式電子顯微鏡表面觀察………… 66 圖 4-15 CaO specimens穿透式電子顯微鏡表面觀察………… 68 圖 4-16 未經冷卻步驟所得到的CaO-Shell與經冷卻步驟所得到的CaO-Shell,簡寫為CaO-Shell-B的XRD圖譜……… 71 圖 4-17 CaO-Shell的結構示意圖………………………………… 72 圖 4-18 CaO晶格在碳酸化反應時所假設的機構……………… 73 圖 4-19 循環次數 vs. 吸收利用率於循環式CO2吸收測試(不同作者的結果)…………………………………………… 74 圖 4-20 Ca(OH)2與CaO粉末XRD繞射圖譜…………………… 77 圖 4-21 單位晶格(unit cell)及結晶結構(crystal structure) ……… 78 圖 4-22 CaO specimens加水處理前後之孔徑分佈……………… 80 圖 4-23 CaO specimens掃描式電子顯微鏡表面觀察…………… 81 圖 4-24 CaO specimens TEM圖…………………………………… 83 圖 4-25 Ca(OH)2-Shell在20% CO2/N2 (50 cm3/min)下,從室溫階梯式升溫至800°C碳酸化重量增加vs.時間圖………… 87 圖 4-26 CaO-Shell在20% CO2/N2 (50 cm3/min)下,不同鍛燒溫度,在1小時700°C下捕捉CO2 碳酸化重量增加vs.時間……………………………………………………… 88 圖 4-27 水合後之CaO吸收劑與未水合之CaO吸收劑700°C吸 收在20 min的CO2吸收測試…………………………… 89 圖 4-28 水合後之CaO吸收劑700°C吸收與未水合之CaO吸收劑750°C吸收在20 min的CO2吸收測試………………89 圖 4-29 水合後之CaO吸收劑與未水合之CaO吸收劑,在20 min的CO2吸收測試………………………………………… 90

    [1] H. J. Herzog, “What future for carbon capture and sequestration,” Environ. Sci. Technol. 35 (2001) 148A–153A.
    [2] H. J. Herzog and D. Golomb, “Carbon capture and storage from fossil fuel use”; pp. 277–287 in Encyclopedia of energy, Edited by C. J. Cleveland. Elsevier Science Inc, New York, 2004.
    [3] V. Ramanathan, “The greenhouse theory of climate change: A test by an inadvertent global experiment,” Science 240 (1988) 293–299.
    [4] B. Metz, O. Davidson, H. deConinck, M. Loos, and L. Meyer, Intergovernmental panel on climate change, Cambridge University Press (2005)
    [5] H. deConinck, IPCC WG III on Mitigation; “The IPCC special report on carbon dioxide capture and storage”; Workshop on CDM and CCS, METI, Government of Japan, April 20-21, 2006, Paris, France.
    [6] Intergovernmental Panel on Climate Change; Climate Change 2007: The Physical Science Basis. Summary for Policymakers; Contribution to WG1 to the 4th Assessment Report, Feb. 5th 2007.
    [7] P. W. F. Riemer and W. G. Ormerod, “International persectives and the results of carbon dioxide capture disposal and utilization studies,” Energ. Convers. Manage., 36 (1995) 813–818.
    [8] J. Kohlmann, “Removal of CO2 from flue gases using magnesium silicates in Finland,” Helsinki university of technology department of mechanical engineering, Energy Engineering and Environmental Protection Publications, espoo (2001).
    [9] 黃啟峰,二氧化碳與地球暖化,科學發展 2007年5月,413期。
    [10] 產基會粘愷峻、中興工程藍文忠,溫室效應氣體—二氧化碳去除方式之簡介,環保技術e報-第30期。
    [11] 林佳璋、劉文宗,“二氧化碳回收技術,工業技術研究院化學
    工業研究所。
    [12] 楊斐喬,“二氧化碳的分離及捕集,工研院化學工業研究所。
    [13] K. Johnsen, H. J. Ryub, J. R. Grace, and C. J. Lim, “Sorption-enhanced steam reforming of methane in a fluidized bed reactor with dolomite as CO2-acceptor,” Chem. Eng. Sci., 61 (2006) 1195–1202.
    [14] E. P. Reddy and P. G. Smirniotis, “High-temperature sorbents for CO2 made of alkali metals doped on CaO supports,” J. Phys. Chem. B, 108 (2004) 7794–7800.
    [15] K.Chrissafis, C. Dagounaki, and K. M. Paraskevopoulos, “The effect of procedural variables on maximum capture efficiency of CO2 using a carbonation/calcination cycle of carbonate rocks,” Thermochim Acta 428 (2005) 193–198.
    [16] N. H. Flurin and A. T. Harris, “Reactivity of CaO derived nano-sized CaCO3 particles through CO2 capture-and-release cycles,” CHem. Eng. Sci., 64 (2009) 187–191.
    [17] G. S. Grasa, J. C. Abanades, M. Alonso, and B. Gonzalez, “Reactivity of highly cycles particles of CaO in a carbonation/calcination loop,” Chem. Eng. J., 137 (2008) 561–567.
    [18] T. Shimizu, T. Hirama, H. Hosoda, K. Kitano, M. Inagaki, and K. Tejima, “A twin fluid-bed reactor for removal of CO2 from combustion process,” Trans. IchemE 77A (1999) 62–68.
    [19] D. P. Butt, K. S. Lackner, C. H. Wendt, S. D. Conzone, H. Kung, Y. C. Lu, and J. K. Bremser, “Kinetics of thermal dehydroxylation and carbonation of magnesium hydroxide,” J. Am. Ceram. Soc., 79 (1996) 1892–1898.
    [20] W. J. J. Huijgen, G. J. Witkamp, and R. N. J. Comans, “Mineral CO2 sequestration by steel slag carbonation,” Environ. Sci. Technol., 39 (2005) 9676–9682.
    [21] H. Bearat, M. J. Mckelvy, A. V. G. Chizmeshya, R. Sharma, and R. W. Carpenter, “Magnesium hydroxide dehydroxylation/carbonation reaction process: implications for carbon dioxide mineral sequestration,” J. Am. Ceram. Soc., 85 (2002) 742–748.
    [22] D. Golomb, S. Pennell, D. Ryan, E. Barry, and P. Swett, “Ocean sequestration of carbon dioxide: modeling the deep ocean release of a dense emulsion of liquid CO2-in-water stabilized by pulverized limestone particles,” Environ. Sci. Technol., 41 (2007) 4698–4704 .
    [23] P. Freund, “International collaboration on capture, storage, and utilization of greenhouse gases,” Waste Manage, 17 (1997) 281–287.
    [24] D. Alvarez and J. C. Abanades, “Pore-size and shape effects on the recarbonation performance of calcium oxide submitted to repeated calcination/recarbonation cycles,” Energ. Fuel., 19 (2005) 270–278.
    [25] G. S. Grasa and J. C. Abanades, “CO2 capture capture capacity of CaO in long series of carbonation/calcination cycles,” Ind. Eng. Chem. Res., 45 (2006) 8846–8851.
    [26] J. C. Abanades, E. J. Anthony, J. Wang, and J. E. Oakey, “Fluidized bed combustion systems integrating CO2 capture with CaO,” Environ. Sci. Technol., 39 (2005) 2861–2866.
    [27] J. C. Abanades and D. Alvarez, “Conversion limits in the reaction of CO2 with lime,” Energ. Fuel., 17 (2003) 308–315.
    [28] G. Grasa, B. Gonzalez, M. Alonso, and J. C. Abanades, “Comparison of CaO-based synthetic CO2 sorbents under realistic,” Energ. Fuel., 21(2007) 3560–3562.
    [29] V. Manovic and E. J. Anthony, “Thermal activation of CaO-based sorbent and self-reactivation during CO2 capture looping cycles,” Environ. Sci. Technol., 42 (2008) 4170–4174.
    [30] C. Han and D. P. Harrison, “Simultaneous shift reaction and carbon dioxide separation for the direct production of hydrogen,” Chem. Eng. Sci., 49 (1994) 5875–5883.
    [31] C. Han and D. P. Harrison, “Multicycle performance of a single-step process for H2 production,” Sep. Sci. Technol., 32 (1997) 681–697.
    [32] J. R. Hufton, S. Mayorga, and S. Sircar, “Sorption-enhanced reaction process for hydrogen production,” AIChE J., 45 (1999) 248–256.
    [33] C. M. Kinoshita and S. Q. Turn, “Production of hydrogen from bio-oil using CaO as a CO2 sorbent,” Int. J. Hydrogen Energ. 28 (2003) 1065–1071.
    [34] J. Comas, M. Laborde, and N. Amadeo, “Thermodynamic analysis of hydrogen production from ethanol using CaO as a CO2 sorbent,” J. Power Sources, 138 (2004) 61–67.
    [35] T. Weimera, R. Bergerb, C. Hawthorneb, and J. C. Abanades, “Lime enhanced gasification of solid fuels: Examination of a process for simultaneous hydrogen production and CO2 capture,” Fuel, 87 (2008) 1678–1686.
    [36] D. K. Lee, I. H. Baek, and W. L. Yoon, “Modeling and simulation for the methan steam reforming enhanced by in situ CO2 removel utilizing the CaO carbonation for H2 production,” Chem. Eng. Sci., 59 (2004) 931–942.
    [37] J. A. Satrio, B. H. Shanks, and T. D. Wheelock, “Development of a novel combined catalyst and sorbent for hydrocarbon reforming,” Ind. Eng. Chem. Res., 44 (2005) 3901–3911.
    [38] Robert H. Perry& Don W. Green, Perry’s Chemical Enginneers’ Handbook. McGraw. Hill International Editions.
    [39] S. F. Wu, Study on the CO2 sorbent at high temperature application in the SERP technique of producing hydrogen. 71-2 Jang-dong Yusong-ku, Daejon, 305–343, Korea.
    [40] 吳嶸,吳素芳,包矽改性納米碳酸鈣應用於高溫CO2吸附的性能,化工學報,57 (2006) 1722-1726。
    [41] S. K. Bhatia and D. D. Perlmutter, “Effect of the product layer on the kinetics of the CO2-lime reaction,” AIChE J., 29 (1983) 79–86.
    [42] R. Barker, “The reversibility of the reaction CaCO3 CaO CO2,” J. Appl. Chem. Biotechnol., 23 (1973) 733–742.
    [43] D. Mess, A. F. Sarofim, and J. P. Longwell, “Product Layer Diffusion during the Reaction of Calcium Oxide with Carbon Dioxide,” Energ. Fuel., 13 (1999) 999–1005.
    [44] K. Kuramoto, S. Fujimoto, A. Morita, S. Shibano, Y. Suzuki, H. Hatano, S. Y. Ling, M. Harada, and T. Takarada, “Repetitive carbonation-calcination reactions of Ca-based sorbents for efficient CO2 sorption at elevated temperatures and pressures,” Ind. Eng. Chem. Res., 42 (2003) 975–981
    [45] Z. S. Li, N. S. Cai, Y. Y. Huang, and H. J. Han, “Synthesis, experimental studies, and analysis of a new calcium-based carbon dioxide absorbent,” Energ. Fuel., 19 (2005) 1447–1452.
    [46] R. W. Hughes, D. Lu, E. J. Anthony, and Y. Wu, “Improved long-term conversion of limestone-derived sorbents for in situ capture of CO2 in a fluidized bed combustor,” Ind. Eng. Chem. Res., 43 (2004) 5529–5539.
    [47] H. Gupta and L. S. Fan, “Carbonation-calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas,” Ind. Eng. Chem. Res., 41 (2002) 4035–4042.
    [48] C. Salvador, D. Lu, E. J. Anthony, J. C. Abanades, “Enhancement of CaO for CO2 capture in an FBC environment,” Chem. Eng. J., 96 (2003) 187–195.
    [49] Z. S. Li, N. S. Cai, and Y. Y. Huang, “Effect of preparation temperature on cyclic CO2 capture and multiple carbonation/calcination cycles for a new Ca-based CO2 sorbent,” Ind. Eng. Chem. Res. 45 (2006) 1911–1917.
    [50] H. Lu, A. Khan, P. G. Smirniotis, “Relationship between structural properties and CO2 capture performance of CaO-based sorbents obtained from different organometallic precursors,” Ind. Eng. Chem. Res., 47 (2008) 6216–6220
    [51] K. O. Albrecht, K. S. Wagenbach, J. A. Satrio, B. H. Shanks, and T. D. Wheelock, “Development of a CaO-based CO2 sorbent with improved cyclic stability,” Ind. Eng. Chem. Res., 47 (2008) 7841–7848.
    [52] V. Manovic and E. J. Anthony, “Steam reactivation of spent CaO-based sorbent for multiple CO2 capture cycles,” Environ. Sci. Technol., 41 (2007) 1420–1425.
    [53] P. Sun, J. R. Grace, C. J. Lim, and E. J. Anthony, “Investigation of attempts to improved cyclic CO2 capture by sorbent hydration and modification,” Ind. Eng. Chem. Res., 47 (2008) 2024–2032.
    [54] S. F. Wu, T. H. Beum, J. I. Yang, and J. N. Kim, “Properties of Ca-base CO2 sorbent using Ca(OH)2 as precursor,” Ind. Eng. Chem. Res., 46 (2007) 7896–7899.
    [55] B. D. Cullity, S. R. Stock, “Elements of X-ray Diffration”, 3rd ed., Prentice Hall, 2001.
    [56] D. Alvarez, J. C. Abanades, “Determination of the critical product layer thickness in the reaction of CaO with CO2,” Ind. Eng. Chem. Res., 44 (2005) 5608–5615.
    [57] P. C. Lin, C. W. Huang, C. T. Hsiao, and H. Teng, “Magnesium hydroxide extracted from a magnesium-rich mineral for CO2 sequestration in a gas-solid system,” Environ. Sci. Technol., 42 (2008) 2748–2752.
    [58] A. I. Lysikov, A. N. Salanov, and A. G. Okunev, “Change of CO2 carrying capacity of CaO in isothermal recarbonation-decomposition cycles,” Ind. Eng. Chem. Res., 46 (2007) 4633–4638.
    [59] J. I. Ida and Y. S. Lin, “Mechanism of high-temperature CO2 sorption on lithium Zirconate,” Environ. Sci Technol., 37 (2003) 1999–2004.
    [60] J. I. Ida, R. Xiong, and Y. S. Lin, “Synthesis and CO2 sorption properties of pure and modified lithium zirconate,” Sep. Purif. Technol., 36 (2004) 41–51.
    [61] R. H. Borgwardt, “Sintering of nascent calcium oxide,” Chem. Eng. Sci., 44 (1989) 53–60.
    [62] D. Alvarez, M. Pena, and A. G. Borrego, “Behavior of different calcium-based sorbents in a calcination/carbonation cycle for CO2 capture,” Energ. Fuel., 21 (2007) 1534–1542
    [63] Y. Nakamura, K. Sato, S. Fujitani, K. Nishio, K. Oguro, and I. Uehara, “Lattice expanding behavior and degradation of LaNi5-based alloys,” J. Alloy. Compd., 267 (1998) 205–210.
    [64] P. H. L. Notten, R. E. F. Einerhand, and J. L. C. Daams, “How to achieve long-term electrochemical cycling stability with hydride-forming electrode materials,” J. Alloy. Compd., 231 (1995) 604–610.
    [65] J. C. Abanades, “The maximum capture efficiency of CO2 using a carbonation/calcination cycle of CaO/CaCO3,” Chem. Eng. J., 90 (2002) 303–306.
    [66] F. Zeman, “Effect of steam hydration on performance of lime sorbent for CO2 capture,” Int. J. greenh. gas con., 2 (200) 203–209.
    [67] D. Celentano, P. Estey, J. Stallings, Review of Methods for Characterizing Sorbents for AFBs, In: Proc. 9th Intern. Conf. on FBC, (1987) 501-510.

    下載圖示 校內:2011-07-29公開
    校外:2011-07-29公開
    QR CODE