| 研究生: |
林欣穎 Lin, Hsin-Ying |
|---|---|
| 論文名稱: |
以CFD探討艏推進器對KCS船模阻力與流場的影響 CFD Investigation for the Influence of Bow Thruster on KCS Ship Resistance and Flow Field |
| 指導教授: |
吳炳承
Wu, Ping-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | CFD 、KCS 、OpenFOAM 、艏側推進器 、船模阻力 |
| 外文關鍵詞: | CFD, KCS, OpenFOAM, Bow Thruster, Ship Resistance |
| 相關次數: | 點閱:127 下載:15 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要是使用OpenFoam軟體對公開船型KCS貨櫃船的黏性阻力進行計算,在船舶穩態(Steady state)、六個不同船速、三種疏密網格等條件下進行模擬,並與國外水槽實驗數據的比較並進行驗證與確認(V&V,Verification and Validation)分析。驗證分析裡驗證了網格和時間步長獨立性及迭算收斂性。確認分析裡確認了本研究模擬結果對實驗之誤差值小於網格、時間步長及迭算不確定性的總和。在確立模擬數值之可靠性之後,本研究進一步分析相同船型且配備艏推進器的船模阻力和其流場分析。為了觀察了解孔道和側推進器對於全船的流場以及阻力分析的影響,並了解是否側推進器能在模擬中簡化甚至省略,我們考慮了三種在船艏模擬艏側推進器的方式: (1) 側推進孔道中設定對稱面條件、(2) 孔道中加入平板、以及 (3) 孔道內加入實際推進器。
This research mainly uses OpenFoam software to calculate the viscous resistance of the open model KCS container ship. The simulation is carried out under the conditions of the ship's steady state, six different ship speeds, and three dense grids. Compare the experimental data of the sink and perform Verification and Validation (V&V) analysis. In the verification analysis, the independence of grid and time step and the convergence of iteration are verified. The confirmation analysis confirms that the error value of the simulation results of this study to the experiment is less than the sum of the grid, time step and the uncertainty of the iteration. After establishing the reliability of the simulation values, this research further analyzes the resistance and flow field analysis of the ship model with the same ship type and equipped with bow thrusters. In order to observe and understand the influence of the tunnel and the bow thruster on the flow field and resistance analysis of the whole ship, and to understand whether the side thruster can be simplified or even omitted in the simulation, we considered three ways to simulate the bow side thruster in the bow: ( 1) Set symmetry conditions in the side propulsion channel, (2) add a flat plate to the channel, and (3) add an actual propeller to the channel.
[1] Kim, W. J., Van, S. H., & Kim, D. H. Measurement of flows around modern commercial ship models. Experiments in fluids, 31(5), 567-578. (2001)
[2] Lu, P., & Wang, S. CFD simulation of propeller and tunnel thruster performance. In International Conference on Offshore Mechanics and Arctic Engineering (Vol.45400, p. V002T08A017). American Society of Mechanical Engineers.(2014)
[3] Larsson, L, SSPA-ITTC Workshop on ship boundary layers 1980: proceedings.(1981)
[4] Larsson, L. Ship viscous flow. In Proceedings of 1990 SSPA-CTH-IIHR Workshop.(1990)
[5] Kodama, Y., Takeshi, H., Hinatsu, M., Hino, T., Uto, S., Hirata, N., & Murashige, S. Proceedings of the 1994 CFD Workshop. Ship Research Institute, Japan. (1994)
[6] Larsson, L., Stern, F., & Bertram, V. Benchmarking of computational fluid dynamics for ship flows: the Gothenburg 2000 workshop. Journal of Ship Research, 47(1), 63-81. (2003)
[7] Hino, T. CFD workshop Tokyo 2005. National Maritime Research Institute, Japan. (2005)
[8] Larsson, L., Stern, F., & Visonneau, M. CFD in ship hydrodynamics—results of the Gothenburg 2010 workshop. In MARINE 2011, IV International Conference on Computational Methods in Marine Engineering (pp. 237-259). Springer,
Dordrecht. (2013)
[9] Larsson, L., Stern, F., Visonneau, M., Hino, T., Hirata, N., & Kim, J. Tokyo 2015: A workshop on CFD in ship hydrodynamics. In Workshop Proceedings, Tokyo, Dec (pp. 2-4). (2018)
[10] Jasak, H. Naval Hydro Pack: Overview of Numerics and Capability. OceanFOAM Conference, Danish Technical University, Copenhagen (2015).
[11] Wu, P. C., Hossain, M., Kawakami, N., Tamaki, K., Kyaw, H. A., Matsumoto, A., & Toda, Y. EFD and CFD Study of Forces, Ship Motions, and Flow Field for KRISO Container Ship Model in Waves. Journal of Ship Research, 64(1). (2020)
[12] d’Aure, B., Mallol, B., & Hirsch, C. Resistance and Seakeeping CFD Simulations for the Korean Container Ship. Proceedings of the Tokyo, 359-364(2015)
[13] Seo, S., Song, S., & Park, S. A study on CFD uncertainty analysis and its application to ship resistance performance using open source libraries. Journal of the Society of Naval Architects of Korea, 53(4), 329-335. (2016)
[14] Mustafa Insel., Bow Thruster Opening Optimizations. Targeted Advanced Research for Global Efficiency of Transportation Shipping. (2010-2014)
[15] Hämäläinen, R., & van Heerd, J. Energy saving possibilities in twin or triple propeller cruise liners. In Third International Symposium on Marine Propulsors. (2013).
[16] ITTC-Quality Manual 7.5-03-01-01, CFD General. Uncertainty Analysis in CFD verification and Validation Methodology and Procedures. ITTC Recommended Procedures and Guidelines. (2017)
[17] Xing, T., & Stern, F. Factors of safety for Richardson extrapolation. Journal of Fluids Engineering, 132(6). (2010)
[18] Jasak, H., Vukčević, V., & Christ, D. Rapid free surface simulation for steadystate hull resistance with FVM using OpenFOAM. In 30th Symposium on Naval Hydrodynamics. (2014)
[19] 李勁甫, 在靜水與波浪中自推之模擬.碩士論文,國立臺灣海洋大學,(2015)
[20] 洪凡婷, 應用不同計算方法計算船舶在阻力中的阻力.碩士論文,國立臺灣海洋大學,(2015)
[21] 艏推進器模型廠家資料
https://www.max-power.com/product/20-hydraulic-tunnel-thrusters/6500-hydraulic-tunnel-thruster-ct-hyd-550
[22] 台灣國際造船
https://www.csbcnet.com.tw/Business/ShipRepair/ShipRepairCase/ContainerModified.htm
[23] OPENFOAM 手冊