| 研究生: |
蔡維哲 Tzai, Wei-Jhe |
|---|---|
| 論文名稱: |
聚4甲基1戊烯在稀薄對二甲苯溶液中凝膠網路的形成及其對結晶行為的影響 The isothermal crystallization of poly(4-methylpentene-1) under the influence of the previously developed gelation network in the solution |
| 指導教授: |
阮至正
Ruan, Jrjeng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 凝膠網路 、TEM 、二甲苯 、對二甲苯 |
| 外文關鍵詞: | GelⅡ, GelⅢ, P4MP, Gel І, gelation network |
| 相關次數: | 點閱:40 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Isotactic Poly(4-methyl-1-pentene)(P4MP)分子在溶液中因受到與溶劑分子之間的交互作用影響,在不同的溫度與不同的溶劑下,最適當的分子鏈構形(chain conformation)會有所不同。這些在不同條件下所採取的分子鏈構形,亦促成了P4MP分子於溶液中呈現多樣化的分子聚集行為,包括凝膠的形成與結晶成長。
本論文於恆溫結晶實驗中發現,當稀薄溶液由溶解溫度直接急冷至持溫溫度後,P4MP分子可於溶液中,快速聚集並形成一類似凝膠的網路結構(gelation network; microgel)。考慮溶液的濃度與形成凝膠網路的速率,此凝膠網路的形成,較無法以傳統的液相-液相分離機制來解釋。
P4MP分子於稀薄溶液中聚集成的網路結構,會隨著時間於等溫的條件下進一步轉變為結晶相。於實驗中觀察到,其相轉變及結晶成長的方式,隨著溫度會有所不同。在較低的溫度,結晶層(lamellae)堆疊的方向垂直堆疊於該節凝膠網路方向。凝膠網路結構,可在凝膠中發現層狀結晶的生成,且隨著持溫時間層狀結晶彼此融合(welding)而增厚。在較高的溫度,結晶層(lamellae)平行堆疊於該節凝膠網路方向。對二甲苯溶液恆溫結晶過程所產生的凝膠中,觀測到層狀結晶間孔洞的出現,而孔洞間具有條狀聯結隨著結晶增厚而產生。
P4MP分子於對二甲苯溶液中形成之凝膠網路,因恆溫溫度不同,其凝膠網路中層狀結晶成長機制亦有所差異。且因為凝膠中層狀結晶生長與堆疊方式,進一步證實溶液中,持溫溫度影響高分子與溶劑分子間的排列,導致凝膠中結晶行為的不同。
Isotactic Poly(4-methyl-1-pentene)(P4MP) can be affected by the interaction of solvent molecule in solution. The appropriate chain conformation of P4MP will be varieties at different temperature and solvent, and the different chain conformations will make P4MP molecules have variety of aggregation behavior in solution, including gelation network composition and crystal growth.
The dissertation discovers P4MP molecules can form gelation network in dilute solution by using isothermal crystallization. Gelation network can be discovered in dilute solution briskly, as the solution quenches from dissolution temperature to isothermal crystallization temperature. When we consider the solution concentration and the rate of becoming gelation network, the mechanism of gelation networks are different from liquid-liquid phase separation, which require super-cooling and stirring.
The gelation network in dilute solution by isothermal crystallization will transform to crystal phase with time. In experiment, the crystal growth of gelation network by low temperature xylene solution can form lamellar structure perpendicular to gelation network direction. The lamellar crystal can be welding with isothermal time increase. The gelation network of isothermal crystallization by p-xylene in low temperature, because p-xylene can increase P4MP molecules crystallization rate, which make welding phenomenon difficult to observe in low temperature p-xylene solution.
The gelation network of P4MP molecules in p-xylene solution, because different isothermal temperature, the growth mechanism of lamellar crystal can also be different. The lamellar crystal growth of gelation network in high temperature p-xylene solution will be parallel to gelation network direction, which is different from lamellar crystal in low temperature solution. This shows that the growth mechanism of P4MP molecules gelation network in solution is different because difference of isothermal temperature. We can further verify that in solution, the interaction between polymer and solvent are affected by isothermal temperature and result in the difference of crystallization behavior in gel because the growth and pile of lamellar crystal in gel.
1. A. Keller, presented in part at the 181st American Chemical; A. Keller, Faraday Discuss., Vol. 101, 1, 1995
2. A. Keller, Faraday Discuss., Vol. 101, 1, 1995
3. M. Ilavsk, advances in polymer science, Vol. 109, 1, 1993
4. Keisuke Kaji, Koji Nishida, Toshiji Kanaya, Go Matsuba, Takashi Konishi, Masayuki Imai, Adv. Polym. Sci., Vol.191, 187, 2005.
5. Takeji Hashimoto, Phase transition, Vol. 12, 1988 , 47
6. P.-D. Hong, C.-M. Chou, Polymer, Vol.41, 8311, 2000
7. M. Hikosaka, K. Watanabe, K. Okada, S. Yamazaki, Adv. Polym. Sci., Vol.191, 137, 2005.
8. P. Schaaf, B. Lotz, J. C. Wittmann, Polymer, Vol. 28, 193, 1987.
9. J. Griffith, M. Rlnby, J. Polym. Sci. Vol. 44, 369, 1960.
10. R. B. Isaacson, I. Kirstenbaum, and W. C. Feist, J. Appl. PoZym. Sci.,Vol. 8,2789
11. K. J. KUMBHANI and E. G. KENT, in Advances in Polymer Blends and Alloys Technology, Vol. 2. edited by M. A. Kohudic , (Tecnomic Publishing Co. Inc., 1988).
12. A. C. PULEO, D. R. PAUL and P . K. WONG, Polymer Vol. 30, 1357, 1989.
13. Y. V. KISNIN, Encyclopedia of Polymer Science and Engineering, Vol. 9, 707, edited by H. F. Mark and N. M. Bikales (J. Wiley and Sons: New York, 1987) .
14. G. Charlet, G. Delmas, F. J. Revol, R. St. J. Manley, Polymer, Vol. 25, 1613, 1984.
15. G. Charlet, G. Delmas, Polymer, Vol. 25, 1619, 1984.
16. G. Natta, P. Corradini, I. W. Bassi, Rend. Fis. Acc. Lincei, Vol. 19, 404, 1955.
17. F. C. Frank, A. Keller, A. O’Connor, Philos. Mag., Vol. 8, 200, 1959.
18. W. Bassi, 0. Bonsignori, G. P. Lorenzi, P. Pino, P. Corradini, P. A. Temussi, J. Polym. Sci., Polym. Phys., 193, 1971.
19. H. Kusanagi, M. T h e, Y. Chatani, H. Tadokoro, J. Polym.Sci., Polym. Phys. Ed., Vol. 16, 131, 1978.
20. Y. Tanda, N. Kawasaki, K. Imida, M. Takayanagi, Rep. Prog. Polym. Phys. Jpn., Vol. 9, 165, 1966.
21. N. Kawasaki, M. Takayanagi, Rep. Prog. Polym. Phys. Jpn., Vol. 10, 337, 1967.
22. M. Takayanagi, N. Kawasaki, J. Macromol. Sci.-Phys., Vol. BI, 741, 1967
23. J. Ruan , A. Thierry, B. Lotz, Polymer, Vol. 47, 5478, 2006
24. R. Hasegawa, Y. Tanabe, M. Kobayashi, H. Tadokoro, A. Sawaoka, Kawai, N. J. Polym. Sci., Polym. Phys. Ed., Vol.8, 1073, 1970.
25. G. Charlet, G. Delmas, Polym. Bull., Vol. 6, 367, 1982.
26. M. S. Aharoni, G. Charlet, G. Delmas, Macromolecules, Vol. 14, 1390, 1981.
27. P. PradCe, J.-F. Revol, R. St. John Manley, Macromolecules, Vol. 21, 2747, 1988.
28. F. Khoury, J. D. Barnes, Journal of National Bureau of Standards- A. Physics and Chemistry, Vol. 76A, No. 3, 1972.
29. Tetsuya Tanigami,* Hisataka Suzuki, Kazuo Yamaura, and Shuji Matsuzawa, Macromolecules, Vol. 18, 2595, 1985.
30. Bernhard Wunderlich, Macromolecular Physics: Crystal Structure, Morphology, Defects, Vol. 1, Chap. 3, London, 1973.
31. Bernhard Wunderlich, Macromolecular Physics: Crystal Nucleation, Growth, Annealing, Vol. 2, Chap. 7, London,1976