簡易檢索 / 詳目顯示

研究生: 張敦傑
Chang, Tun-Chieh
論文名稱: 鑭釹共摻雜鈦酸鍶塊材之製備及其熱電性質之研究
Preparation and thermoelectric properties of La and Nd co-doped SrTiO3 bulk materials
指導教授: 黃啟祥
Hwang, Chii-Shyang
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 85
中文關鍵詞: 熱電材料鈦酸鍶共摻雜固相法
外文關鍵詞: Thermoelectric materials, SrTiO3, co-doped, solid-state reaction
相關次數: 點閱:79下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為提升鈦酸鍶塊材之熱電性質,本研究選用La、Nd二元素共摻雜於鈦酸鍶當中,其試樣表示為Sr0.9La0.1-xNdxTiO3 (x = 0~0.1),探討不同La、Nd共摻雜量對鈦酸鍶粉末燒結及熱電性質之影響。
    固體粉末原料經由球磨混合、兩次煆燒成相、冷均壓成形後,於1500 ℃氬氫(5%H2-95%Ar)還原氣氛中燒結4小時。試樣之結晶相、顯微結構及元素分析是以XRD、SEM、EDS及XPS分析,熱電性質之量測範圍為303 ~ 673 K。
    結晶相及微結構方面,不同鑭、釹共摻雜量之鈦酸鍶塊材,其結晶繞射訊號均為單一相鈦酸鍶,各試樣之微結構相似,晶粒相近,約2~3 μm,平均相對密度為86%。
    電傳導特性方面,各試樣於量測溫度範圍內均呈現N-type電傳導,隨著La摻雜量比例之增加,塊材之電導率有逐漸增加之趨勢,而適量La、Nd共摻雜於鈦酸鍶中,有助於氧空缺之生成,更進一步提升電導率。La、Nd共摻雜量對鈦酸鍶Seebeck係數並無明顯之影響。x = 0.02試樣具最高之功率因子,於473 K時為1652 μW/mK2。
    熱導率方面,隨La摻雜量之減少,有助於降低熱導率,La、Nd共摻雜鈦酸鍶之熱導率,坐落於僅摻La(x =0)及僅摻Nd(x = 0.1)鈦酸鍶之熱導率區間中。
    ZT值方面,x = 0試樣於673 K時具最大ZT值為0.19,於573 K溫度以下,x = 0.02試樣於523 K時具最大ZT值為0.15,此值相較於僅摻La之試樣(x = 0),提升約10%;且相較於僅摻Nd之試樣(x = 0.1),提升約80%。
    關鍵字 : 熱電材料、鈦酸鍶、共摻雜、固相法

    In order to enhance the thermoelectric properties of SrTiO3 bulk, La and Nd were co-doped in SrTiO3 in this study. Sr0.9La0.1-xNdxTiO3 (x = 0-0.1) powders were synthesized by solid-state reaction with two-step calcination (at 1200℃ and 1300℃ for 5 h in air). It was pressed into disks by CIP-ing and sintered at 1500℃ for 4 h in forming gas of 5 mol% hydrogen in argon. The microstructure and thermoelectric properties were investigated from room temperature to 673 K. The results of XRD indicated that all samples are of single phase. SEM surface and fracture morphology images revealed that all samples were consisted of similar grains with an average grain sizes of 2-3 μm. The average relative density of all samples was 86%. Electrical conductivity could be effectively improved with appropriate co-doped content (x = 0.02, 0.08) in SrTiO3. However, the Seebeck coefficient was not obviously influenced with different La and Nd contents in SrTiO3. The maximum value of power factor reached 1652 μW/mK2 at 473 K for x = 0.02 sample. With decreasing La content, thermal conductivity decreased. The maximum value of ZT reached 0.19 at 673 K for x = 0 sample. Below 573 K, the maximum value of ZT reached 0.15 at 523 K for x = 0.02 sample, which is much larger than that of other samples, showing that appropriate La and Nd content co-doped in SrTiO3 is a good approach to enhance thermoelectric performance.
    Key words: Thermoelectric materials, SrTiO3, co-doped, solid-state reaction

    目錄 中文摘要 I Abstract II 誌謝 IX 目錄 XIII 圖目錄 XV 表目錄 XVII 第一章 緒論 1 1-1 前言 1 1-2 研究動機目的及策略 5 第二章 文獻回顧 7 2-1 基本熱電效應 7 2-1-1 熱電效應 7 2-1-2 熱電性質與能源轉換效率 9 2-2 熱電效應的發展與應用 10 2-3 熱電材料的種類 14 2-4 氧化物熱電材料 16 2-4-1 NaxCoO2 16 2-4-2 Ca3Co4O9 17 2-4-3 ZnO 18 2-5 熱電材料的製備方法 19 2-5-1 熔煉法 19 2-5-2 粉末冶金法 20 2-6 鈦酸鍶相關背景及研究動態 21 2-6-1 鈦酸鍶材料的常見製備方法 22 2-7 鈦酸鍶燒結特性相關研究 25 2-8 共摻雜稀土元素對鈦酸鍶熱電性質影響之相關文獻 28 第三章 實驗方法與步驟 46 3-1 實驗用藥品及原料 46 3-2 實驗流程 46 3-3 材料性質之分析 47 3-3-1 粉體及塊材之結晶相鑑定 47 3-3-2 燒結體密度之量測 47 3-3-3 顯微結構之分析 47 3-3-4 顯微組織之元素分析 48 3-3-5 塊材之表面化學分析 48 3-4 燒結體熱電性質之分析 48 3-4-1 導電性量測 48 3-4-2 Seebeck係數之量測 48 3-4-3 熱傳導率量測 49 第四章 結果與討論 53 4-1 粉體之結晶相 53 4-2 粉體之顯微結構 53 4-3 塊材緻密度與結晶相 53 4-4 塊材之顯微結構 55 4-5 塊材之熱電性質 56 4-5-1 電傳導率 56 4-5-2 Seebeck係數 57 4-5-3 功率因子 58 4-5-4 熱傳導係數 58 4-5-5 ZT值 59 第五章 結論 76 參考文獻 77

    [1] D.M. Rowe, CRC handbook of thermoelectrics, ed., CRC press,
    (1995).
    [2] H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T.
    Nomura, Y. Nakanishi, Y. Ikuhara, M. Hirano, H. Hosono, K.
    Koumoto, Giant thermoelectric Seebeck coefficient of a two-
    dimensional electron gas in SrTiO3, Nat Mater, 6, 129-134 (2007).
    [3] T.C. Harman, P.J. Taylor, M.P. Walsh, B.E. LaForge, Quantum dot
    superlattice thermoelectric materials and devices, Science, 297, 2229-
    2232 (2002).
    [4] C.H. Kuo, H.S. Chien, C.S. Hwang, Y.W. Chiu, M.S. Jeng, M.
    Yoshimura, Thermoelectric properties of fine-grained PbTe bulk
    materials fabricated by cryomilling and spark plasma sintering,
    Materials Transactions, 52, 795-801 (2011).
    [5] T. Teranishi, Y. Ishikawa, H. Hayashi, A. Kishimoto, M. Katayama, Y.
    Inada, X.D. Zhou, Thermoelectric efficiency of reduced SrTiO3
    ceramics modified with La and Nb, Journal of the American Ceramic
    Society, 96, 2852-2856 (2013).
    [6] N. Okinaka, L. Zhang, T. Akiyama, Thermoelectric properties of rare
    earth-doped SrTiO3 using combination of combustion synthesis (CS)
    and spark plasma sintering (SPS), ISIJ International, 50, 1300-1304
    (2010).
    [7] A.V. Kovalevsky, A.A. Yaremchenko, S. Populoh, P. Thiel, D.P. Fagg,
    A. Weidenkaff, J.R. Frade, Towards a high thermoelectric performance in rare-earth substituted SrTiO3: effects provided by strongly-reducing sintering conditions, Phys Chem Chem Phys, 16, 26946-26954 (2014).
    [8] X. Li, H. Zhao, D. Luo, K. Huang, Electrical conductivity and
    stability of A-site deficient (La, Sc) co-doped SrTiO3 mixed ionic-electronic conductor, Materials Letters, 65, 2624-2627 (2011).
    [9] A.A. Yaremchenko, S. Populoh, S.G. Patrício, J. Macías, P. Thiel, D.P.
    Fagg, A. Weidenkaff, J.R. Frade, A.V. Kovalevsky, Boosting thermoelectric performance by controlled defect chemistry engineering in Ta-substituted strontium titanate, Chemistry of Materials, 27, 4995-5006 (2015).
    [10] M. Backhaus-Ricoult, J. Rustad, L. Moore, C. Smith, J. Brown,
    Semiconducting large bandgap oxides as potential thermoelectric materials for high-temperature power generation, Applied Physics A, 116, 433-470 (2014).
    [11] H.C. Wang, C.L. Wang, W.B. Su, J. Liu, Y. Zhao, H. Peng, J.L.
    Zhang, M.L. Zhao, J.C. Li, N. Yin, L.M. Mei, Enhancement of thermoelectric figure of merit by doping Dy in La0.1Sr0.9TiO3 ceramic, Materials Research Bulletin, 45, 809-812 (2010).
    [12] H.C. Wang, C.L. Wang, W.B. Su, J. Liu, Y. Sun, H. Peng, L.M. Mei,
    Doping effect of La and Dy on the thermoelectric properties of SrTiO3, Journal of the American Ceramic Society, 94, 838-842 (2011).
    [13] J. Liu, C.L. Wang, H. Peng, W.B. Su, H.C. Wang, J.C. Li, J.L.
    Zhang, L.M. Mei, Thermoelectric properties of Dy-doped SrTiO3 ceramics, Journal of Electronic Materials, 41, 3073-3076 (2012).
    [14] H. Muta, K. Kurosaki, S. Yamanaka, Thermoelectric properties of
    rare earth doped SrTiO3, Journal of Alloys and Compounds, 350, 292-295 (2003).
    [15] P.K. Gallagher, F. Schrey, F.V. Dimarcello, Preparation of
    semiconducting titanates by chemical methods, Journal of the American Ceramic Society, 46, 359-365 (1963).
    [16] A. Kikuchi, N. Okinaka, T. Akiyama, A large thermoelectric figure of
    merit of La-doped SrTiO3 prepared by combustion synthesis with post-spark plasma sintering, Scripta Materialia, 63, 407-410 (2010).
    [17] S. Zhang, J. Liu, Y. Han, B. Chen, X. Li, Formation mechanisms of
    SrTiO3 nanoparticles under hydrothermal conditions, Materials Science and Engineering: B, 110, 11-17 (2004).
    [18] Y. Mao, S. Banerjee, S.S. Wong, Hydrothermal synthesis of
    perovskite nanotubes, Chemical Communications, 408-409 (2003).
    [19] W.D. Yang, K.M. Hung, Optimization of the experimental conditions
    for the preparation of a thin strontium titanate film by hydrothermal process, Journal of Materials Science, 37, 1337-1342 (2002).
    [20] P. Duran, F. Capel, J. Tartaj, C. Moure, Low-temperature fully dense
    and electrical properties of doped-ZnO varistors by a polymerized complex method, Journal of the European Ceramic Society, 22, 67-77 (2002).
    [21] M. Kakihana, M. Yoshimura, H. Mazaki, H. Yasuoka, L. Börjesson,
    Polymerized complex synthesis and intergranular coupling of Bi‐Pb‐Sr‐Ca‐Cu‐O superconductors characterized by complex magnetic susceptibility, Journal of Applied Physics, 71, 3904-3910 (1992).
    [22] M. Ito, T. Nagira, D. Furumoto, S. Katsuyama, H. Nagai, Synthesis
    of NaxCo2O4 thermoelectric oxides by the polymerized complex method, Scripta Materialia, 48, 403-408 (2003).
    [23] M. Ito, T. Matsuda, Thermoelectric properties of non-doped and Y-
    doped SrTiO3 polycrystals synthesized by polymerized complex process and hot pressing, Journal of Alloys and Compounds, 477, 473-477 (2009).
    [24] K. Park, J.S. Son, S.I. Woo, K. Shin, M.-W. Oh, S.-D. Park, T.
    Hyeon, Colloidal synthesis and thermoelectric properties of La-doped SrTiO3 nanoparticles, Journal of Materials Chemistry A, 2, 4217 (2014).
    [25] R. Richman, J. Stringerb, Prospects for efficient thermoelectric
    materials in the near term, San Diego, CA, DARPA/DOE High Efficient Thermoelectric, (2002).
    [26] TE Technology Inc. Frequently asked questions on thermoelectrics.
    [Online]. https://tetech.com/techinfo/#faqs. (2005).
    [27] F. Stabler, Automotive applications of high efficiency
    thermoelectrics, in: (Ed.)^(Eds.) Proceedings of DARPA/ONR/DOE High Efficiency Thermoelectric Workshop, 1-26 (2002).
    [28] S.B. Riffat, X. Ma, Thermoelectrics: a review of present and
    potential applications, Applied thermal engineering, 23, 913-935 (2003).
    [29] G. Nolas, H. Goldsmid, A comparison of projected thermoelectric
    and thermionic refrigerators, Journal of applied physics, 85, 4066-4070 (1999).
    [30] W. Hu, Experimental search for high Curie temperature piezoelectric
    ceramics with combinatorial approaches, ed., Iowa State University, (2011).
    [31] 張金花, 余大斌, 舒詩文, 王峰, 杜凱, 高溫氧化物熱電材料
    及其研究現狀, 材料導報, 38-42 (2013).
    [32] I. Terasaki, Y. Sasago, K. Uchinokura, Large thermoelectric power in
    NaCo2O4 single crystals, Physical Review B, 56, R12685 (1997).
    [33] H. Yakabe, K. Fujita, K. Nakamura, K. Kikuchi, Thermoelectric
    properties of Na/sub x/CoO/sub 2-/spl delta//(x/spl ap/0.5) system; focusing on partially substituting effects, in: (Ed.)^(Eds.) Thermoelectrics, 1998. Proceedings ICT 98. XVII International Conference on, IEEE, 551-558 (1998).
    [34] M. Ito, T. Nagira, Y. Oda, S. Katsuyama, K. Majima, H. Nagai,
    Effect of partial substitution of 3d transition metals for Co on the thermoelectric properties of NaxCo2O4, Materials Transactions, 43, 601-607 (2002).
    [35] B. ZHAN, J. Lan, Y. Liu, Y. Lin, C. Nan, Research progress of
    oxides thermoelectric materials, Journal of Inorganic Materials, 29, 237-244 (2014).
    [36] K. Koumoto, R. Funahashi, E. Guilmeau, Y. Miyazaki, A.
    Weidenkaff, Y. Wang, C. Wan, X.D. Zhou, Thermoelectric ceramics for energy harvesting, Journal of the American Ceramic Society, 96, 1-23 (2013).
    [37] A. Masset, C. Michel, A. Maignan, M. Hervieu, O. Toulemonde, F.
    Studer, B. Raveau, J. Hejtmanek, Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9, Physical Review B, 62, 166 (2000).
    [38] M. Shikano, R. Funahashi, Electrical and thermal properties of
    single-crystalline (Ca2CoO3)0.7CoO2 with a Ca3Co4O9 structure, Applied Physics Letters, 82, 1851-1853 (2003).
    [39] Y. Liu, Y. Lin, Z. Shi, C.W. Nan, Z. Shen, Preparation of Ca3Co4O9
    and improvement of its thermoelectric properties by spark plasma sintering, Journal of the American Ceramic Society, 88, 1337-1340 (2005).
    [40] Y. Liu, Y. Lin, L. Jiang, C.-W. Nan, Z. Shen, Thermoelectric
    properties of Bi3+ substituted Co-based misfit-layered oxides, Journal of Electroceramics, 21, 748-751 (2008).
    [41] S. Aasland, H. Fjellvåg, B. Hauback, Magnetic properties of the one-
    dimensional Ca3Co2O6, Solid state communications, 101, 187-192 (1997).
    [42] G. Ren, J. Lan, C. Zeng, Y. Liu, B. Zhan, S. Butt, Y.H. Lin, C.W.
    Nan, High performance oxides-based thermoelectric materials, Jom, 67, 211-221 (2014).
    [43] M. Ohtaki, K. Araki, K. Yamamoto, High thermoelectric
    performance of dually doped ZnO ceramics, Journal of Electronic Materials, 38, 1234-1238 (2009).
    [44] P. Jood, R.J. Mehta, Y. Zhang, G. Peleckis, X. Wang, R.W. Siegel, T.
    Borca-Tasciuc, S.X. Dou, G. Ramanath, Al-doped zinc oxide nanocomposites with enhanced thermoelectric properties, Nano letters, 11, 4337-4342 (2011).
    [45] Z.H. Wu, H.Q. Xie, Y.B. Zhai, Enhanced thermoelectric figure of
    merit in nanostructured ZnO by nanojunction effect, Applied Physics Letters, 103, 243901 (2013).
    [46] S. Sõmiya, Hydrothermal reactions for materials science and
    engineering: an overview of research in Japan, ed., Springer Science & Business Media, (2012).
    [47] J. Hannay, On the artificial formation of the diamond, Proceedings of
    the Royal Society of London, 30, 450-461 (1879).
    [48] K. Byrappa, M. Yoshimura, Handbook of hydrothermal technology,
    ed., William Andrew, (2012).
    [49] J.O. Eckert, C.C. Hung‐Houston, B.L. Gersten, M.M. Lencka, R.E.
    Riman, Kinetics and mechanisms of hydrothermal synthesis of barium titanate, Journal of the American Ceramic Society, 79, 2929-2939 (1996).
    [50] W. Zhu, C. Wang, S. Akbar, R. Asiaie, Fast-sintering of
    hydrothermally synthesized BaTiO3 powders and their dielectric properties, Journal of materials science, 32, 4303-4307 (1997).
    [51] T. Okuda, K. Nakanishi, S. Miyasaka, Y. Tokura, Large
    thermoelectric response of metallic perovskites: Sr1−xLaxTiO3 (0<~x<~0.1), Physical Review B, 63, 113104 (2001).
    [52] S.Y. Cheng, S.L. Fu, C.C. Wei, Sintering of SrTiO3 with Li2CO3
    addition, Ceramics International, 15, 231-236 (1989).
    [53] K.S. Liu, I.N. Lin, Enhanced densification of SrTiO3 perovskite
    ceramics, Applications of Ferroelectrics, 261-264 (1991).
    [54] S. Cho, P. Johnson, Evolution of the microstructure of undoped and
    Nb-doped SrTiO3, Journal of materials science, 29, 4866-4874 (1994).
    [55] Q. Fu, S. Mi, E. Wessel, F. Tietz, Influence of sintering conditions on
    microstructure and electrical conductivity of yttrium-substituted SrTiO3, Journal of the European Ceramic Society, 28, 811-820 (2008).
    [56] F. Gao, H. Zhao, X. Li, Y. Cheng, X. Zhou, F. Cui, Preparation and
    electrical properties of yttrium-doped strontium titanate with B-site deficiency, Journal of Power Sources, 185, 26-31 (2008).
    [57] L. Amaral, A.M. Senos, P.M. Vilarinho, Sintering kinetic studies in
    nonstoichiometric strontium titanate ceramics, Materials Research Bulletin, 44, 263-270 (2009).
    [58] C.N. George, J. Thomas, R. Jose, H.P. Kumar, M. Suresh, V.R.
    Kumar, P.S. Wariar, J. Koshy, Synthesis and characterization of nanocrystalline strontium titanate through a modified combustion method and its sintering and dielectric properties, Journal of Alloys and Compounds, 486, 711-715 (2009).
    [59] K. Maca, V. Pouchly, Z. Shen, Two-step sintering and spark plasma
    sintering of Al2O3, ZrO2 and SrTiO3 ceramics, Integrated Ferroelectrics, 99, 114-124 (2008).
    [60] T.Q. Thong, T.T.H. Le, N.T. Tinh, Investigation of the influence of
    singly and dually doping effect on scattering mechanisms and thermoelectric properties of perovskite-type STO, Materials Transactions, 56, 1365-1369 (2015).
    [61] Y. Li, W. Wei, L. Yang, M. Su, Y. Sun, G. Min, La and Nd co-doped
    effect on thermoelectric properties of SrTiO3 ceramics, Chiang Mai Journal of Science, 43, 306-310 (2016).
    [62] J. Han, Q. Sun, Y. Song, Enhanced thermoelectric properties of La
    and Dy co-doped, Sr-deficient SrTiO3 ceramics, Journal of Alloys and Compounds, 705, 22-27 (2017).
    [63] J. Han, Q. Sun, W. Li, Y. Song, Microstructure and thermoelectric
    properties of La0.1Dy0.1SrxTiO3 ceramics, Ceramics International, 43, 5557-5563 (2017).
    [64] A.C.L.S. Marques, Advanced Si pad detector development and
    SrTiO3 studies by emission channeling and hyperfine interaction experiments, (2009).
    [65] B. Zhang, J. Wang, T. Zou, S. Zhang, X. Yaer, N. Ding, C. Liu, L.
    Miao, Y. Li, Y. Wu, High thermoelectric performance of Nb-doped SrTiO3 bulk materials with different doping levels, Journal of Materials Chemistry C, 3, 11406-11411 (2015).
    [66] 吳文凱, 以熱裂解法暨火花電漿燒結製備含銅之碲硒化鉍塊材
    及其熱電性質之研究, 成功大學材料科學及工程學系學位論文, 1-83 (2016).
    [67] 李晨, YSZ 添加對摻鑭鈦酸鍶塊材熱電性質之影響, 成功大學
    材料科學及工程學系學位論文, 1-83 (2016).

    下載圖示 校內:2019-09-01公開
    校外:2019-09-01公開
    QR CODE