| 研究生: |
張敦傑 Chang, Tun-Chieh |
|---|---|
| 論文名稱: |
鑭釹共摻雜鈦酸鍶塊材之製備及其熱電性質之研究 Preparation and thermoelectric properties of La and Nd co-doped SrTiO3 bulk materials |
| 指導教授: |
黃啟祥
Hwang, Chii-Shyang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 熱電材料 、鈦酸鍶 、共摻雜 、固相法 |
| 外文關鍵詞: | Thermoelectric materials, SrTiO3, co-doped, solid-state reaction |
| 相關次數: | 點閱:79 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為提升鈦酸鍶塊材之熱電性質,本研究選用La、Nd二元素共摻雜於鈦酸鍶當中,其試樣表示為Sr0.9La0.1-xNdxTiO3 (x = 0~0.1),探討不同La、Nd共摻雜量對鈦酸鍶粉末燒結及熱電性質之影響。
固體粉末原料經由球磨混合、兩次煆燒成相、冷均壓成形後,於1500 ℃氬氫(5%H2-95%Ar)還原氣氛中燒結4小時。試樣之結晶相、顯微結構及元素分析是以XRD、SEM、EDS及XPS分析,熱電性質之量測範圍為303 ~ 673 K。
結晶相及微結構方面,不同鑭、釹共摻雜量之鈦酸鍶塊材,其結晶繞射訊號均為單一相鈦酸鍶,各試樣之微結構相似,晶粒相近,約2~3 μm,平均相對密度為86%。
電傳導特性方面,各試樣於量測溫度範圍內均呈現N-type電傳導,隨著La摻雜量比例之增加,塊材之電導率有逐漸增加之趨勢,而適量La、Nd共摻雜於鈦酸鍶中,有助於氧空缺之生成,更進一步提升電導率。La、Nd共摻雜量對鈦酸鍶Seebeck係數並無明顯之影響。x = 0.02試樣具最高之功率因子,於473 K時為1652 μW/mK2。
熱導率方面,隨La摻雜量之減少,有助於降低熱導率,La、Nd共摻雜鈦酸鍶之熱導率,坐落於僅摻La(x =0)及僅摻Nd(x = 0.1)鈦酸鍶之熱導率區間中。
ZT值方面,x = 0試樣於673 K時具最大ZT值為0.19,於573 K溫度以下,x = 0.02試樣於523 K時具最大ZT值為0.15,此值相較於僅摻La之試樣(x = 0),提升約10%;且相較於僅摻Nd之試樣(x = 0.1),提升約80%。
關鍵字 : 熱電材料、鈦酸鍶、共摻雜、固相法
In order to enhance the thermoelectric properties of SrTiO3 bulk, La and Nd were co-doped in SrTiO3 in this study. Sr0.9La0.1-xNdxTiO3 (x = 0-0.1) powders were synthesized by solid-state reaction with two-step calcination (at 1200℃ and 1300℃ for 5 h in air). It was pressed into disks by CIP-ing and sintered at 1500℃ for 4 h in forming gas of 5 mol% hydrogen in argon. The microstructure and thermoelectric properties were investigated from room temperature to 673 K. The results of XRD indicated that all samples are of single phase. SEM surface and fracture morphology images revealed that all samples were consisted of similar grains with an average grain sizes of 2-3 μm. The average relative density of all samples was 86%. Electrical conductivity could be effectively improved with appropriate co-doped content (x = 0.02, 0.08) in SrTiO3. However, the Seebeck coefficient was not obviously influenced with different La and Nd contents in SrTiO3. The maximum value of power factor reached 1652 μW/mK2 at 473 K for x = 0.02 sample. With decreasing La content, thermal conductivity decreased. The maximum value of ZT reached 0.19 at 673 K for x = 0 sample. Below 573 K, the maximum value of ZT reached 0.15 at 523 K for x = 0.02 sample, which is much larger than that of other samples, showing that appropriate La and Nd content co-doped in SrTiO3 is a good approach to enhance thermoelectric performance.
Key words: Thermoelectric materials, SrTiO3, co-doped, solid-state reaction
[1] D.M. Rowe, CRC handbook of thermoelectrics, ed., CRC press,
(1995).
[2] H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T.
Nomura, Y. Nakanishi, Y. Ikuhara, M. Hirano, H. Hosono, K.
Koumoto, Giant thermoelectric Seebeck coefficient of a two-
dimensional electron gas in SrTiO3, Nat Mater, 6, 129-134 (2007).
[3] T.C. Harman, P.J. Taylor, M.P. Walsh, B.E. LaForge, Quantum dot
superlattice thermoelectric materials and devices, Science, 297, 2229-
2232 (2002).
[4] C.H. Kuo, H.S. Chien, C.S. Hwang, Y.W. Chiu, M.S. Jeng, M.
Yoshimura, Thermoelectric properties of fine-grained PbTe bulk
materials fabricated by cryomilling and spark plasma sintering,
Materials Transactions, 52, 795-801 (2011).
[5] T. Teranishi, Y. Ishikawa, H. Hayashi, A. Kishimoto, M. Katayama, Y.
Inada, X.D. Zhou, Thermoelectric efficiency of reduced SrTiO3
ceramics modified with La and Nb, Journal of the American Ceramic
Society, 96, 2852-2856 (2013).
[6] N. Okinaka, L. Zhang, T. Akiyama, Thermoelectric properties of rare
earth-doped SrTiO3 using combination of combustion synthesis (CS)
and spark plasma sintering (SPS), ISIJ International, 50, 1300-1304
(2010).
[7] A.V. Kovalevsky, A.A. Yaremchenko, S. Populoh, P. Thiel, D.P. Fagg,
A. Weidenkaff, J.R. Frade, Towards a high thermoelectric performance in rare-earth substituted SrTiO3: effects provided by strongly-reducing sintering conditions, Phys Chem Chem Phys, 16, 26946-26954 (2014).
[8] X. Li, H. Zhao, D. Luo, K. Huang, Electrical conductivity and
stability of A-site deficient (La, Sc) co-doped SrTiO3 mixed ionic-electronic conductor, Materials Letters, 65, 2624-2627 (2011).
[9] A.A. Yaremchenko, S. Populoh, S.G. Patrício, J. Macías, P. Thiel, D.P.
Fagg, A. Weidenkaff, J.R. Frade, A.V. Kovalevsky, Boosting thermoelectric performance by controlled defect chemistry engineering in Ta-substituted strontium titanate, Chemistry of Materials, 27, 4995-5006 (2015).
[10] M. Backhaus-Ricoult, J. Rustad, L. Moore, C. Smith, J. Brown,
Semiconducting large bandgap oxides as potential thermoelectric materials for high-temperature power generation, Applied Physics A, 116, 433-470 (2014).
[11] H.C. Wang, C.L. Wang, W.B. Su, J. Liu, Y. Zhao, H. Peng, J.L.
Zhang, M.L. Zhao, J.C. Li, N. Yin, L.M. Mei, Enhancement of thermoelectric figure of merit by doping Dy in La0.1Sr0.9TiO3 ceramic, Materials Research Bulletin, 45, 809-812 (2010).
[12] H.C. Wang, C.L. Wang, W.B. Su, J. Liu, Y. Sun, H. Peng, L.M. Mei,
Doping effect of La and Dy on the thermoelectric properties of SrTiO3, Journal of the American Ceramic Society, 94, 838-842 (2011).
[13] J. Liu, C.L. Wang, H. Peng, W.B. Su, H.C. Wang, J.C. Li, J.L.
Zhang, L.M. Mei, Thermoelectric properties of Dy-doped SrTiO3 ceramics, Journal of Electronic Materials, 41, 3073-3076 (2012).
[14] H. Muta, K. Kurosaki, S. Yamanaka, Thermoelectric properties of
rare earth doped SrTiO3, Journal of Alloys and Compounds, 350, 292-295 (2003).
[15] P.K. Gallagher, F. Schrey, F.V. Dimarcello, Preparation of
semiconducting titanates by chemical methods, Journal of the American Ceramic Society, 46, 359-365 (1963).
[16] A. Kikuchi, N. Okinaka, T. Akiyama, A large thermoelectric figure of
merit of La-doped SrTiO3 prepared by combustion synthesis with post-spark plasma sintering, Scripta Materialia, 63, 407-410 (2010).
[17] S. Zhang, J. Liu, Y. Han, B. Chen, X. Li, Formation mechanisms of
SrTiO3 nanoparticles under hydrothermal conditions, Materials Science and Engineering: B, 110, 11-17 (2004).
[18] Y. Mao, S. Banerjee, S.S. Wong, Hydrothermal synthesis of
perovskite nanotubes, Chemical Communications, 408-409 (2003).
[19] W.D. Yang, K.M. Hung, Optimization of the experimental conditions
for the preparation of a thin strontium titanate film by hydrothermal process, Journal of Materials Science, 37, 1337-1342 (2002).
[20] P. Duran, F. Capel, J. Tartaj, C. Moure, Low-temperature fully dense
and electrical properties of doped-ZnO varistors by a polymerized complex method, Journal of the European Ceramic Society, 22, 67-77 (2002).
[21] M. Kakihana, M. Yoshimura, H. Mazaki, H. Yasuoka, L. Börjesson,
Polymerized complex synthesis and intergranular coupling of Bi‐Pb‐Sr‐Ca‐Cu‐O superconductors characterized by complex magnetic susceptibility, Journal of Applied Physics, 71, 3904-3910 (1992).
[22] M. Ito, T. Nagira, D. Furumoto, S. Katsuyama, H. Nagai, Synthesis
of NaxCo2O4 thermoelectric oxides by the polymerized complex method, Scripta Materialia, 48, 403-408 (2003).
[23] M. Ito, T. Matsuda, Thermoelectric properties of non-doped and Y-
doped SrTiO3 polycrystals synthesized by polymerized complex process and hot pressing, Journal of Alloys and Compounds, 477, 473-477 (2009).
[24] K. Park, J.S. Son, S.I. Woo, K. Shin, M.-W. Oh, S.-D. Park, T.
Hyeon, Colloidal synthesis and thermoelectric properties of La-doped SrTiO3 nanoparticles, Journal of Materials Chemistry A, 2, 4217 (2014).
[25] R. Richman, J. Stringerb, Prospects for efficient thermoelectric
materials in the near term, San Diego, CA, DARPA/DOE High Efficient Thermoelectric, (2002).
[26] TE Technology Inc. Frequently asked questions on thermoelectrics.
[Online]. https://tetech.com/techinfo/#faqs. (2005).
[27] F. Stabler, Automotive applications of high efficiency
thermoelectrics, in: (Ed.)^(Eds.) Proceedings of DARPA/ONR/DOE High Efficiency Thermoelectric Workshop, 1-26 (2002).
[28] S.B. Riffat, X. Ma, Thermoelectrics: a review of present and
potential applications, Applied thermal engineering, 23, 913-935 (2003).
[29] G. Nolas, H. Goldsmid, A comparison of projected thermoelectric
and thermionic refrigerators, Journal of applied physics, 85, 4066-4070 (1999).
[30] W. Hu, Experimental search for high Curie temperature piezoelectric
ceramics with combinatorial approaches, ed., Iowa State University, (2011).
[31] 張金花, 余大斌, 舒詩文, 王峰, 杜凱, 高溫氧化物熱電材料
及其研究現狀, 材料導報, 38-42 (2013).
[32] I. Terasaki, Y. Sasago, K. Uchinokura, Large thermoelectric power in
NaCo2O4 single crystals, Physical Review B, 56, R12685 (1997).
[33] H. Yakabe, K. Fujita, K. Nakamura, K. Kikuchi, Thermoelectric
properties of Na/sub x/CoO/sub 2-/spl delta//(x/spl ap/0.5) system; focusing on partially substituting effects, in: (Ed.)^(Eds.) Thermoelectrics, 1998. Proceedings ICT 98. XVII International Conference on, IEEE, 551-558 (1998).
[34] M. Ito, T. Nagira, Y. Oda, S. Katsuyama, K. Majima, H. Nagai,
Effect of partial substitution of 3d transition metals for Co on the thermoelectric properties of NaxCo2O4, Materials Transactions, 43, 601-607 (2002).
[35] B. ZHAN, J. Lan, Y. Liu, Y. Lin, C. Nan, Research progress of
oxides thermoelectric materials, Journal of Inorganic Materials, 29, 237-244 (2014).
[36] K. Koumoto, R. Funahashi, E. Guilmeau, Y. Miyazaki, A.
Weidenkaff, Y. Wang, C. Wan, X.D. Zhou, Thermoelectric ceramics for energy harvesting, Journal of the American Ceramic Society, 96, 1-23 (2013).
[37] A. Masset, C. Michel, A. Maignan, M. Hervieu, O. Toulemonde, F.
Studer, B. Raveau, J. Hejtmanek, Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9, Physical Review B, 62, 166 (2000).
[38] M. Shikano, R. Funahashi, Electrical and thermal properties of
single-crystalline (Ca2CoO3)0.7CoO2 with a Ca3Co4O9 structure, Applied Physics Letters, 82, 1851-1853 (2003).
[39] Y. Liu, Y. Lin, Z. Shi, C.W. Nan, Z. Shen, Preparation of Ca3Co4O9
and improvement of its thermoelectric properties by spark plasma sintering, Journal of the American Ceramic Society, 88, 1337-1340 (2005).
[40] Y. Liu, Y. Lin, L. Jiang, C.-W. Nan, Z. Shen, Thermoelectric
properties of Bi3+ substituted Co-based misfit-layered oxides, Journal of Electroceramics, 21, 748-751 (2008).
[41] S. Aasland, H. Fjellvåg, B. Hauback, Magnetic properties of the one-
dimensional Ca3Co2O6, Solid state communications, 101, 187-192 (1997).
[42] G. Ren, J. Lan, C. Zeng, Y. Liu, B. Zhan, S. Butt, Y.H. Lin, C.W.
Nan, High performance oxides-based thermoelectric materials, Jom, 67, 211-221 (2014).
[43] M. Ohtaki, K. Araki, K. Yamamoto, High thermoelectric
performance of dually doped ZnO ceramics, Journal of Electronic Materials, 38, 1234-1238 (2009).
[44] P. Jood, R.J. Mehta, Y. Zhang, G. Peleckis, X. Wang, R.W. Siegel, T.
Borca-Tasciuc, S.X. Dou, G. Ramanath, Al-doped zinc oxide nanocomposites with enhanced thermoelectric properties, Nano letters, 11, 4337-4342 (2011).
[45] Z.H. Wu, H.Q. Xie, Y.B. Zhai, Enhanced thermoelectric figure of
merit in nanostructured ZnO by nanojunction effect, Applied Physics Letters, 103, 243901 (2013).
[46] S. Sõmiya, Hydrothermal reactions for materials science and
engineering: an overview of research in Japan, ed., Springer Science & Business Media, (2012).
[47] J. Hannay, On the artificial formation of the diamond, Proceedings of
the Royal Society of London, 30, 450-461 (1879).
[48] K. Byrappa, M. Yoshimura, Handbook of hydrothermal technology,
ed., William Andrew, (2012).
[49] J.O. Eckert, C.C. Hung‐Houston, B.L. Gersten, M.M. Lencka, R.E.
Riman, Kinetics and mechanisms of hydrothermal synthesis of barium titanate, Journal of the American Ceramic Society, 79, 2929-2939 (1996).
[50] W. Zhu, C. Wang, S. Akbar, R. Asiaie, Fast-sintering of
hydrothermally synthesized BaTiO3 powders and their dielectric properties, Journal of materials science, 32, 4303-4307 (1997).
[51] T. Okuda, K. Nakanishi, S. Miyasaka, Y. Tokura, Large
thermoelectric response of metallic perovskites: Sr1−xLaxTiO3 (0<~x<~0.1), Physical Review B, 63, 113104 (2001).
[52] S.Y. Cheng, S.L. Fu, C.C. Wei, Sintering of SrTiO3 with Li2CO3
addition, Ceramics International, 15, 231-236 (1989).
[53] K.S. Liu, I.N. Lin, Enhanced densification of SrTiO3 perovskite
ceramics, Applications of Ferroelectrics, 261-264 (1991).
[54] S. Cho, P. Johnson, Evolution of the microstructure of undoped and
Nb-doped SrTiO3, Journal of materials science, 29, 4866-4874 (1994).
[55] Q. Fu, S. Mi, E. Wessel, F. Tietz, Influence of sintering conditions on
microstructure and electrical conductivity of yttrium-substituted SrTiO3, Journal of the European Ceramic Society, 28, 811-820 (2008).
[56] F. Gao, H. Zhao, X. Li, Y. Cheng, X. Zhou, F. Cui, Preparation and
electrical properties of yttrium-doped strontium titanate with B-site deficiency, Journal of Power Sources, 185, 26-31 (2008).
[57] L. Amaral, A.M. Senos, P.M. Vilarinho, Sintering kinetic studies in
nonstoichiometric strontium titanate ceramics, Materials Research Bulletin, 44, 263-270 (2009).
[58] C.N. George, J. Thomas, R. Jose, H.P. Kumar, M. Suresh, V.R.
Kumar, P.S. Wariar, J. Koshy, Synthesis and characterization of nanocrystalline strontium titanate through a modified combustion method and its sintering and dielectric properties, Journal of Alloys and Compounds, 486, 711-715 (2009).
[59] K. Maca, V. Pouchly, Z. Shen, Two-step sintering and spark plasma
sintering of Al2O3, ZrO2 and SrTiO3 ceramics, Integrated Ferroelectrics, 99, 114-124 (2008).
[60] T.Q. Thong, T.T.H. Le, N.T. Tinh, Investigation of the influence of
singly and dually doping effect on scattering mechanisms and thermoelectric properties of perovskite-type STO, Materials Transactions, 56, 1365-1369 (2015).
[61] Y. Li, W. Wei, L. Yang, M. Su, Y. Sun, G. Min, La and Nd co-doped
effect on thermoelectric properties of SrTiO3 ceramics, Chiang Mai Journal of Science, 43, 306-310 (2016).
[62] J. Han, Q. Sun, Y. Song, Enhanced thermoelectric properties of La
and Dy co-doped, Sr-deficient SrTiO3 ceramics, Journal of Alloys and Compounds, 705, 22-27 (2017).
[63] J. Han, Q. Sun, W. Li, Y. Song, Microstructure and thermoelectric
properties of La0.1Dy0.1SrxTiO3 ceramics, Ceramics International, 43, 5557-5563 (2017).
[64] A.C.L.S. Marques, Advanced Si pad detector development and
SrTiO3 studies by emission channeling and hyperfine interaction experiments, (2009).
[65] B. Zhang, J. Wang, T. Zou, S. Zhang, X. Yaer, N. Ding, C. Liu, L.
Miao, Y. Li, Y. Wu, High thermoelectric performance of Nb-doped SrTiO3 bulk materials with different doping levels, Journal of Materials Chemistry C, 3, 11406-11411 (2015).
[66] 吳文凱, 以熱裂解法暨火花電漿燒結製備含銅之碲硒化鉍塊材
及其熱電性質之研究, 成功大學材料科學及工程學系學位論文, 1-83 (2016).
[67] 李晨, YSZ 添加對摻鑭鈦酸鍶塊材熱電性質之影響, 成功大學
材料科學及工程學系學位論文, 1-83 (2016).