| 研究生: |
陳世偉 Chen, Shih-Wei |
|---|---|
| 論文名稱: |
直流式磁控濺鍍鈷薄膜之表面結構
變化與其應用於OME製程之研究 Morphology Evolution of Co Thin Films during Deposition by DC Magnetron Sputtering and Their Applications for OME Process |
| 指導教授: |
劉全璞
Liu, Chuan-Pu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 126 |
| 中文關鍵詞: | 二矽化鈷 、氧化層調節磊晶法 |
| 外文關鍵詞: | cobalt silicide, Oxide-Mediated Epitaxy |
| 相關次數: | 點閱:112 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗研究目的,主要有兩部分,使用DC磁控濺鍍系統時,發現在濺鍍鈷膜時,在工作壓力8x10-3Torr,基板施加負偏壓50V,濺鍍功率50W,濺鍍距離(基板與Target之間距離,Dt-s)為6cm時,會在鈷薄膜的表面有三角錐狀物的生成,其大小尺寸在數十至250nm之間(以錐狀物的底邊長計算),為了研究錐狀物的成長模式以及可能影響的濺鍍參數,設定了一系列條件來研究,如濺鍍功率,基板施加偏壓大小,成長的膜厚,濺鍍時的工作壓力,濺鍍距離,不同方向的矽基板等,來探討其大小,數量及分佈密度等的變化。使用的儀器有SEM、α-Step、AFM以及TEM等。
另一部份則是利用本DC磁控濺鍍系統來進行OME製程,利用早期之研究所得到最佳結晶性與平整性的鈷膜的條件,應用此濺鍍參數沉積鈷薄膜,進行OME製程的前置鍍膜製程。而最早的OME製程,只有一段退火,本實驗設計二段退火,第一段為460℃,第二段為600℃,均在真空退火系統下進行。此外,將矽基板doping更多的Si在表面區域,探討對矽化反應的影響;設計夾層法,方法為成長完二氧化矽後,依序鍍上Co/Ti/Co,此為結合OME與TIME製程的設計,而本實驗發現改變濺鍍距離,會使得鈷膜的結構跟著改變,濺鍍距離6cm時可得到HCP結構的Co,濺鍍距離10cm時可得到FCC結構的Co,也將此加入OME製程的參數中。而使用AES觀察退火後,鈷原子擴散情形,利用XPS判別鍵結能是否為二矽化鈷,使用GIXRD判別結構,利用TEM之plan-view與cross-section方法來研究晶粒成長狀況,以期能夠找出二矽化鈷最佳的成長製程條件。
The cobalt thin films are grown by D.C. magnetron sputtering as a function of the target-to-substrate distance, bias and power on both Si (100) and (111) substrates. The crystal structure and morphology of the thin films are characterized by x-ray diffraction, scanning electron microscopy, transmission electron microscopy and atomic force microscopy. It is found that the cobalt crystal structure can be varied from HCP to FCC by varying the target–to-substrate distance from 6 to 10 cm. The roughness and the preferred orientation of the thin films are greatly affected by the substrate bias and power. In addition, pyramid-like nanostructures with sharp tips are formed on the surface of the thin films when negative bias is applied. The faceted planes on the nanostructures depend on the resulting Co crystal structure while the size and density are determined by the growth parameters. The evolution of the surface nanostructures are systematically examined as a function of substrate bias and thin film thickness. The formation mechanism of the surface nanostructures is discussed in the paper.
We use D.C. magnetron sputtering to form CoSi2 by OME (Oxide-Mediated Epitaxy) Process. Thickness of Co films is sensitive for OME process, we can get uniform Co film about 3~6 nm by sputtering. Growth difference of CoSi2 can be varied by using different parameter, like annealing by two steps that are 460℃ for 60 seconds and 600℃ for 60seconds, substrate be implanted more silicon, and design the sandwich structure of OME process.CoSi2 thin film can grow uniform by sandwich structure and annealing by two steps.
[1] 陳力俊, “微電子材料與製程”, 中國材料科學學會, 民國八十九年
[2] 溫金瑞, 劉全璞, ”磊晶二矽化鈷(CoSi2)之成長”, 工業材料p.170-174 (2001)
[3] 林鴻志, 深次微米閘極技術知發展與未來趨勢, 毫微米通訊期刊,第五卷第三期。
[4] R. T. Tung, “Oxide mediated epitaxy of CoSi2 on silicon”, p.3461 (1996)
[5] R. T. Tung, “A Novel Technique for Ultrathin CoSi2 Layers: Oxide Mediated Epitaxy”, p.1650-1654 (1997)
[6] R. T. Tung, “Ultrathin silicide formation for ULSI devices”, p.268-274 (1997)
[7] R. T. Tung, “Epitaxial silicide interfaces in microelectronics”, p.233-239 (2000)
[8] 溫金瑞, “直流式磁控濺鍍鈷膜於矽基板之結構變化與應用於OME製程之研究”, 國立成功大學材料科學與工程學系, 碩士論文(2002)
[9] 賴耿陽, ”IC製程之濺射技術”, 復漢出版社 (1997)
[10] 王起明, “氮化鈦薄膜濺鍍之研究”, 國立清華大學材料科學與工程學系, 碩士論文 (1996)
[11] A. M. Howwastson, Pergamon Press, “An Introduction to Gas Discharge”, Chapter. 4, 84 (1976)
[12] B. Chapman, John Willwy & Son, Inc. N. Y., “Glow Discharge Processes”, Chapter. 6, 178 (1980)
[13] Brain Chapman, ‘Glow Discharge Process”, Chapter. 3, p.129-131, Academic Press, U. K. (1992)
[14] John A. Thornton, “Influence of Apparatus Geometry and Deposition conditions on the Structure and Topography of Thick Sputtered Coatings”, J. Vac. Sci. Technol. 11(4), 666 (1974)
[15] Milton Ohring, “The Materials Science if Thin Films, Chap. 3, Academic Press, p.129-131 (1992)
[16] G. J. van Grup, W. F. van der Weg, and D. Sigurd, “interaction in theCo/Si Thin Film System. Ⅱ. Diffusion Maker Experimenrts”, J. Appl.Phys. 49 (1978) 4011-4020
[17] J.P.Gambinoa, E.G. Colgan, “Invited Review Silicide and ohmic contacts”, p.99-146 (1998)
[18] J. B. Lasky, J. S. Nakos, D. J. Cain, andP. J. Geiss, “Comparison of Transformation to Low-Resistivity Phase and Aggeramation of TiSi2 and C0Si2”, IEEE Tran. Electron. Devices, ED-38, p.262-269 (1991)
[19] K. Maex, “Silicides for Integrated Circuits:TiSi2 and C0Si2”, Materials Science and Engineering R11, p.53-153 (1993)
[20] R. Beyers. R. Sinclair, ”Metastable Phase Formation inTitanium-Silicon Thin-Film”, J. Appl. Phys. 57 (1985) 5240-5245
[21] T. Ohguro et al, IEEE Tran. Electron Devices, ED-41, p.2305 (1994)
[22] T. Ohguro, S. Nakamura, M. Koike,T. Morimoto, A. Nishiyama, Y. Ushiku, T.Yoshitomi, M. Ono, M. Saito, and H. Iwai, ”Analysis of Rs Sistance Behavior in Ti-salicide and Ni-salicide polysilicon Films,” Analysya, IWWTrans. IEEE Tran. Election Device ED-41(199483-88)
[23] K. N. Tu and J. M. Mayer, “Silicide Formation “, in Thin Films-Interdifusion and Reactions”, edited by J. M. Poate, K. N. Tu and J. W. Mayer (Wiley, New York, 1978) p.359
[24] GJ. Van Gurp and C. Langereis, “Cobalt Silicide Layer on Si. l. Structure and Growth”, J. Appl. Phys. 49, p.4301-4307 (1975)
[25] S. S. Lau, J. W. Mayer, and K. N. Tu, “Interaction in the Co/Si Thin Film System. I. kinetics”, J. Appl. Phys.49, p.4005-4010 (1978)
[26] K. N. Tu, G. Ottaviani, R. D. Thompson, and J. W. Mayer, “Thermal Stabilityy and Growth Kinetics of Co2Si and CoSi in Thin-Film Reaction”, J. Appl. Phys. 53, p.4406-4410 (1982)
[27] G. J. van Grup, W. F. van der Weg, and D. Sigurd, “interaction in the Co/Si Thin Film System. Ⅱ. Diffusion Maker Experimenrts”, J. Appl. Phys. 49 (1978) 4011-4020
[28] K. N. Tu and J. M. Mayer, “Silicide Formation “, in Thin Films-Interdifusion and Reactions”, edited by J. M. Poate, K. N. Tu and J. W. Mayer (Wiley, New York, 1978) p.359
[29] K. Maex, Material Science and Engineering, R11(1993)
[30] K. Goto et al., Proc. IRPS, p.363(1998)
[31] T. Ohguro et al.,Proc. SSDM, p.192(1993)
[32] Shyam P. Murarka, Metallization Theory and Practice for VLSI and ULSI, p.25-39
[33] A. Ishizaka and Y. Shiraki, J. Electrochem. Soc. 133, 666 (1986)
[34] 汪建民主編, “材料分析”, 中國材料科學學會 (1998)
[35] Taylor, A., and Leber S., Trans., AIME, 200, 190 (1954)
[36] Jmes D. Plummer, Michael D. Deal, Peter B. Griffin,”SILICON VLSI TECHNOLOGY”, Chapter 6, PRENTICE HALL, p.312-p.313(2000)
[37] S. S. Lau, J. W. Mayer, K. N. Tu. [J. Appl. Phys. (USA) vol.(1978) p.4005]
[38] C. D. Lien, M. A. Nicolet, C. S. Pai., S. S. Lau [Appl. Phys. A (Germany ) vol.36 (1985) p.153]
[39] G. J. van Gurp, C. Langereis [J. Appl. Phys. (USA) vol.46 (1975) p.4301]
[40] C. D. Lien, M. A. Nicolet, C. S. Pai., S. S. Lau [Appl. Phys. A (Germany ) vol.34 (1984) p.249]
[41] C. D. Lien, M. Bartur, M. A. Nicolet [Mater. Res. Soc. Symp. Proc. (USA) vol.25 (1984) p.51]