簡易檢索 / 詳目顯示

研究生: 陳得明
Chen, Te-Ming
論文名稱: 脈衝電漿介電質放電技術應用於三角翼之研究
Study of the Pulsed mode Dielectric Barrier Discharge Plasma Actuators on a Delta Wing
指導教授: 溫志湧
Wen, Chih-Yung
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 74
中文關鍵詞: 電漿致動器離子風三角翼升力係數
外文關鍵詞: Plasma Actuator, Ionic Wind, Delta wing, Lift Coefficient
相關次數: 點閱:88下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採用電漿致動器,利用高電壓差解離鄰近氣體產生離子風(Ionic wind),藉由這微小的風速擾動,來延遲氣流分離(Delay flow separation)、降低壓力阻力(Pressure drag)等,改變三角翼空氣動力特性。此電漿致動器擺放於三角翼翼前緣,流場之雷諾數範圍為50,000~110,000,驅動電漿致動器包括連續放電(Continuous mode)以及脈衝放電(Pulsed mode)兩種模式,並且改變脈衝放電頻率以及工作週期(Duty cycle)長短,以找出最適當參數降低電能的消耗。實驗結果發現在開啟翼前緣不同位置之電漿致動器,其中部分位置分別只需要20%以及50%連續放電之電量即可發揮作用,當F+在1、2附近時,可以得到最好的升力係數提升。此外,本研究也針對電極尺寸做最佳化,以求得更大的離子風風速。實驗結果發現當暴露電極(Exposed electrode)越窄、覆蓋電極(Covered electrode)越寬以及兩電極越靠近時,電漿致動器誘導出的離子風將可達2.6m/s。

    The working principle of plasma actuators is to apply a high voltage electric field to ionize the air. These ions exchange momentum with the neutral fluid particles and induce fluid movement, so called electric ionic wind. The weakly perturbation was to change the aerodynamic characteristics of a delta wing model. Plasma actuators were employed on the airfoil to introduce the flow control, such as, delaying the flow separation, reducing the vehicle drag…etc. This research was performed on a delta wing at low Reynolds numbers of range (50,000~110,000). The plasma actuators were placed on the leading edge of the delta wing and were driven in a high-voltage. In order to reduce power consumption, the plasma actuators are applied pulsed mode at high voltage. The pulse frequency and duty cycle are varied to identify the most appropriate parameters. The cases with actuators (on position of nearing the leading edge) are driven by pulsed mode, that approach to continuous mode effects on lift enhancement, power consumption is need 20% and 50% respectively. The results show that the lift coefficient can be best improved when F+ equals to about 1 or 2. In addition, the research also optimized electrode dimensions to achieve greater ionic wind. When exposed electrode is narrow, covered electrode is wide and two electrodes are closer, the ionic wind velocity which is induced by the plasma actuators will become larger. The results indicate that the measured maximum ionic wind velocity is 2.6 m/s.

    中文摘要 I Abstract II 誌謝 IV 目錄 V 表目錄 IX 圖目錄 X 符號表 XIII 第一章 序論 1 §1.1 前言 1 §1.2 電漿致動器原理 3 §1.3 三角翼特性 5 §1.4 文獻回顧 7 §1.4.1 電流體動力學致動器(Electrohydrodynamic actuator) 7 §1.4.3 其他方面之應用 18 §1.4.4 無因次參數 19 §1.4.5 三角翼文獻回顧 19 §1.5 研究動機與目的 20 第二章 實驗方法與設備 22 §2.1 低速風洞 23 §2.1.1 皮托管及壓力轉換器 24 §2.1.2 外置式應變規力平衡儀 24 §2.1.3 A/D轉換器 25 §2.2 玻璃皮托管 26 §2.3 三角翼模型 28 §2.4 電漿致動器之製作 29 §2.4.1 高壓電設備 29 §2.4.2 致動器結構 30 §2.4.2.1 致動器置於三角翼 30 §2.4.2.2 致動器置於平板 32 §2.4.3 高壓衰減探棒(High voltage probe) 33 §2.5 實驗步驟 34 第三章 結果與討論 37 §3.1 電漿致動器實驗結果 37 §3.2 電漿致動器附近的速度分布 41 §3.3 氣動力量測結果 42 §3.3.1 三角翼升力係數、阻力係數 43 §3.3.2 電漿致動器於不同位置對升力之影響 45 §3.3.3 脈衝介電質放電 49 §3.3.3.1 開啟A1、A2致動器 50 §3.3.3.2 開啟A1致動器 54 §3.4 電極幾何尺寸最佳化 57 第四章 結論與建議 64 §4.1 結論 64 §4.2 建議 65 參考文獻 66

    [1] M. Gad-El-Hak (2000), Flow Control, Cambridge: Cambridge University Press.
    [2] W. Shyy, M. Berg and D. Ljungqvist(1999), “Flapping and Flexible Wings for Biological and Micro Air Vehicles,” Progress in Aerospace Sciences, 35(5) pp.455~505.
    [3] K. B. M. Q. Zaman and D. J. Mckinzie (1991), “Control of Laminar Separation over Airfoils by Acoustic Excitation,” AIAA journal, 29(7) pp.1075~1083.
    [4] D. Greenblatt and I. Wygnanski(2000), “Use of Periodic Excitation to Enhance Airfoil Performance at Low Reynolds Numbers,” Journal of Aircraft, 38(1) pp.190~192.
    [5] E. Moreau(2007), “Airflow Control by Non-thermal Plasma Actuators,” J. Phys., 40(3) pp.605~636.
    [6] F. Rogier, J. C. Matéo-Vélez and Géraldine Quinio(2006), “Numerical Modeling of DC Discharges in Air Flows,” Conference on Computational Physics, 177(1-2) pp.78~79.
    [7] A. M. Mitchell, J. Delery(2001), “Research into Vortex Breakdown Control,” Progress in Aerospace Sciences, 37(4) pp.385-418.
    [8] I. Gursul(2005), “Review of Unsteady Vortex Flows over Slender Delta Wings,” Journal of Aircraft, 42(2) pp.299~319.
    [9] J. D’Adamo, G. Artana, E. Moreau, and G. Touchard(2002), “Control of the Airflow Close to a Flat Plate with Electrohydrodynamic Actuators,” ASME Paper, Montreal, Quebec, Canada, july.
    [10] R. Sosa, and G. Artana(2006), “Steady Control of Laminar Separation over Airfoils with Plasma Sheet Actuators,” Journal of Electrostatics, 64(7-9) pp.604~610.
    [11] F. Soetomo(1992), “The Influence of High Voltage Discharge on Flat Plate Drag at Low Reynolds Number Air Flow,” MS Thesis, Iowa State University, Ames, IA, USA.
    [12] H. R. Velkoff and J. Ketcham(1968), “Effect of an Electrostatic Field on Boundary Layer Transition,” AIAA journal, 16 pp.1381~1383.
    [13] G. M. Colver and S. E. Khabiry(1999), “Modeling of DC Corona Discharge Along an Electrically Conductive Flat Plate with Gas Flow,” IEEE Trans. Ind. Appl., 35(2) pp.387~394.
    [14] L. Leger, E. Moreau, G. Artana and G. Touchard(2001), “Influence of a DC Corona Discharge on The Airflow Along an Inclined Flat Plate,” Journal of Electrostatics, 51-52 pp.300~306.
    [15] E. Moreau, L. Leger, and G. Touchard(2006), “Effect of a DC Surface-Corona Discharge on a Flat Plate Boundary Layer for Air Flow Velocity up to 25m/s,” Journal of Electrostatics, 64 pp.215~225.
    [16] L. Leger, E. Moreau, and G. Touchard(2002), “Effect of a DC Corona Electrical Discharge on the Airflow Along a Flat Plate,” IEEE Trans. Ind. Appl., 38(6) pp.1478~1485.
    [17] C. Louste, E. Moreau, and G. Touchard(2002), “DC Corona Surface Discharge Along an Insulating Flat Plate in Air: Experimental Results,” Annual Report Conference on Electrical Insulation and Dielectric Phenomena, pp.822~826.
    [18] 李卓翰(2009),「電漿致動器於三角翼上之應用」,國立成功大學航太所碩士論文。
    [19] A. Fridman, A. Chirokov and A. Gutsol(2005), “Non-thermal Atmospheric Pressure Discharge,” J. Phys. D: Appl. Phys., 38(2) pp.1~24.
    [20] S. Yokoyama, M. Kogoma, T. Morikawi and S. Okazaki(1990), “The Mechanisms of the Stabilized Glow Plasma at Atmospheric Pressure,” J. Phys. D: Appl. Phys., pp.1125~1128.
    [21] F. Massines, A. Rabehi, P. Decomps, R. B. Gadri, P. S´egur and C. Mayoux(1998), “Experimental and Theoretical Study of a Glow Discharge at Atmospheric Pressure Controlled by Dielectric Barrier,” J. Phys. D: Appl. Phys., 83(6) pp.2950~2957.
    [22] J. R. Roth and D. M. Sherman(1998), “Boundary Layer Flow Control With a One Atmosphere Uniform Glow Discharge Surface Plasma,” AIAA 36th Aerospace Sciences Meeting and Exhibit.
    [23] J. R. Roth(2006), “Subsonic Plasma Aerodynamics for Flight Control of Aircraft,” IN: Proceedings of 2006 International Symposium on Electrohydrodynamics, ISEHD.
    [24] C. L. Enloe, T. E. McLaughlin, R. D. VanDyken, and K. D. Kachner(2004), “Mechanisms and Responses of a Single Dielectric Barrier Plasma Actuator: Plasma Morphology,” AIAA journal, 42(3) pp.589~594.
    [25] M. L. Post and T. C. Corke(2004), “Separation Control on High Angle of Attack Airfoil Using Plasma Actuators,” AIAA journal, 42(11) pp.2177~2184.
    [26] T. C. Corke, M. L. Post, and D. M. Orlov(2008), “Single-Dielectric Barrier Discharge Plasma Enhanced Aerodynamics: Concepts, Optimization, and Applications,” Journal of Propulsion and Power, 24(5) pp.935-945.
    [27] J. C. Laurentie, J. Jolibois, and E. Moreau(2009), “Surface Dielectric Barrier Discharge: Effect of Encapsulation of the Grounded Electrode on the Electromechanical Characteristics of the Plasma Actuator,” Journal of Electrostatics, 67(2-3) pp.93~98.
    [28] Martiqua L. Post, Thomas C. Corke, “Separation Control Using Plasma Actuators: Dynamic Stall Vortex Control on Oscillating Airfoil,” AIAA journal, 44(12) pp.3125~3135.
    [29] D. Greenblatt, C. Y. Schu ̈le, D. Romann, and C. O. Paschereit(2008), “Dielectric Barrier Discharge Flow Control at Very Low Flight Reynolds Numbers,” AIAA journal, 46(6) pp.1528~1541.
    [30] D. Greenblatt, Y. Kastantin, C. N. Nayeri, and C. O. Paschereit(2008), “Delta-Wing Flow Control Using Dielectric Barrier Discharge Actuators,” AIAA journal, 46(6) pp.1554~1560
    [31] 陳信安(2010),「電漿介電質放電技術應用於三角翼空氣動力特性之研究」,國立成功大學航太所碩士論文。
    [32] J. Jacob, R. Rivir and C. Carter(2004), “Boundary Layer Flow Control Using AC Discharge Plasma Actuators,” AIAA 2nd Flow Control Meeting, Portland, Oregon, June 28-July 1.
    [33] J. Jolibois, Maxime Forte and E ́ric Moreau(2008), “Application of an AC barrier discharge actuator to control airflow separation above a NACA 0015 airfoil: Optimization of the actuation location along the chord,” Journal of Electrostatics, 66(9-10) pp.496~503.
    [34] P. Versailles, V. G. Gosselin and H. D. Vo(2009), “Impact of Pressure and Temperature on the Performance of Plasma Actuators,” AIAA journal, 48(4) pp.859~863.
    [35] Eric Moreau, Roberto Sosa and Guillermo Artana(2008), “Electric wind produced by surface plasma actuators: a new dielectric barrier discharge based on a three-electrode geometry,” J. Phys D: Appl. Phys., 41(11).
    [36] N. Benard, N. Balcon and E. Moreau(2008), “Electric wind produced by a surface dielectric barrier discharge operating in air at different pressures: aeronautical control insights,” J. Phys D: Appl. Phys., 41(4).
    [37] G. Artana, R. Sosa, E. Moreau and G. Touchard(2003), “Control of the Near-wake Flow Around a Circular Cylinder with Electrohydrodynamic Actuators,” Experiments in Fluids, 35(6) pp.580~588.
    [38] A. Asghar and E. Jumper(2004), “Phase Synchronization of Vortex Shedding from Two Side-by-Side Circular Cylinders Using Plasma Actuators,” 42nd AIAA Aerospace Science Meeting and Exhibit.
    [39] F. O. Thomas, A. Kozlov and T. C. Corke(2006), “Plasma Actuators for Bluff Body Flow Control,” AIAA Meeting paper 2006-2845, San Francisco, USA, June 2006.
    [40] F. O. Thomas, A. Kozlov, and T. C. Corke(2008), “Plasma Actuators for Cylinder Flow Control and Noise Reduction,” AIAA journal, 46(8) pp.1921~1931.
    [41] A. Santhanakrishnan and J. D. Jacob(2006), “On Plasma Synthetic Jet Actuators,” 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, Jan. 9-12, 2006.
    [42] J. Huang, T. C. Corke, and F. O. Thomas(2006), “Unsteady Plasma Actuators for Separation Control of Low-Pressure Turbine Blades,” AIAA journal, 44(7) pp.1477~1487.
    [43] A. Labergue, E. Moreau, N. Zouzou and G. Touchard(2007), “Separation Control Using Plasma Actuators: Application to a Free Turbulent Jet,” J. Phys. D: Appl. Phys., 40(3) pp.674~684.
    [44] D. Bivolaru, S. P. Kuo(2005), “Aerodynamic Modification of Supersonic Flow Around Truncated Cone Using Pulsed Electrical Discharges,” AIAA journal, 43(7) pp.1482~1489.
    [45] P. Q. Elias, B. Chanetz, S. Larigaldie, and D. Packan(2007), “Study of the Effect of Glow Discharges Near a M=3 Bow Shock,” AIAA journal, 45(9) pp.2237~2245.
    [46] P. Q. Elias, B. Chanetz, S. Larigaldie, D. Packan and C. O. Laux(2008), “Mach 3 Shock Wave Unsteadiness Alleviation Using a Negative Corona Discharge,” AIAA journal, 46(8) pp.2042~2049.
    [47] R. C. Nelson, T. C. Corke, C. He, H. Othman, T. Matsuno, M. P. Patel, and T. T. Ng(2007), “Modification of the Flow Structure over a UAV Wing for Roll Control,” AIAA paper 45th Aerospace Sciences Meeting, Reno, Nevada, January 8-11 2007.
    [48] G. L. Leonard, M. Mitchner, and S. A. Self(1983), “An Experimental Study of The Electrohydrodynamic Flow in Electrostatic Precipitator,” J. Fluid Mech., 127 pp.123~140.
    [49] R. Sosa, E. Moreau, G. Touchard, and G. Artana(2004), “Stall Control at High Angle of Attack with Periodically Excited EHD Actuators,” AIAA paper 2004-2738, Portland, USA, June 2004.
    [50] P. Magnier, D. Hong, A. L. Chesneau, J. M. Bauchire, and J. Hureau(2007), “Control of Separated Flows with the Ionic Wind Generated by a DC Corona Discharge,” Experiments in Fluids, 42(5) pp.815~825.
    [51] A. M. Mitchell, P. Molton, D. Barberis, and J. Delery(2001), “Vortical Substructures in the Shear Layers Forming Leading Edge Vortices,” AIAA paper 2001-31012, June 2001.
    [52] Y. Guy, J. A. Morrow, and T. E. Mclaughlin(2000), “Velocity Measurements on a Delta Wing with Periodic Blowing and Suction,” 38th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, January 2000.
    [53] S. G. Siegel, and J. A. Morrow(2001), “PIV Measurements on a Delta Wing with Periodic Blowing and Suction,” AIAA paper 2001-2436, 2001.
    [54] J. X. Zhan, and J. J. Wang(2004), “Experimental Study on Gurney Flap and Apex Flap on a DeltaWing,” Journal of Aircraft, 41(6) pp.1379~1383.
    [55] I. Gursul, R. Gordnier, and M. Visbal(2005), “Unsteady aerodynamics of nonslender delta wings,” Progress in Aerospace Sciences, 41(7) pp.515~557.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE