簡易檢索 / 詳目顯示

研究生: 蔡忠憲
Tsai, Chung-Hsien
論文名稱: 以二氧化鈦奈米管為前驅物製作染料敏化太陽能電池之陽極電極
Nanocrystalline Anatase TiO2 Prepared from Nanotubes Precursor for Anode of Dye-sensitized Solar Cells
指導教授: 鄧熙聖
Teng, Hsisheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 88
中文關鍵詞: 二氧化鈦奈米管奈米結晶性染料敏化太陽能電池紅汞染料水熱處理
外文關鍵詞: hydrothermal treatment., mercurochrome, dye-sensitized nanocrystalline solar cells, TiO2 nanotubes
相關次數: 點閱:101下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究利用商業化二氧化鈦(degussa P-25)製備出奈米管狀物為前軀體,並透過水熱方法進一步獲得較P-25更細緻且具更大比表面積(>100 m2/g)的奈米顆粒,並和P-25所製作的光電極做比較,最後利用電化學方法探討電解質組成對其極限擴散電流及白金/電解質界面阻力的影響,並探討電池組成(導電玻璃、染料、二氧化鈦膜厚度)、4-tert-Butylpyridine處理與否對其轉化效率的影響。

      以此奈米顆粒製作的光電極與P-25做比較,在染料為mercurochrome,入射光強度為83 mW/cm2情況下,最大轉化效率可達2.05%,出現在膜厚3.9 m時;而P-25則在膜厚6.9 m時達最大轉化效率1.94%。由電流(Jsc)-膜厚曲線及轉化效率(%)-膜厚曲線來看,利用此奈米顆粒確實可得較P-25大的閉環電流(Jsc)及轉換效率(%),證明以具高比表面積的奈米結晶性半導體材料供染料吸附確實可有效提升電池整體效能。

      In the present work, nanocrystalline TiO2 particles were prepared for the fabrication of the anode electrodes of the dye-sensitized solar cell. Commercial TiO2 (Degussa P-25) was used as the starting materials to prepare nanotubes precursor from hydrothermal treatment. Nanocrystalline TiO2 particles which are smaller than P-25 and have high surface areas (SBET > 100 m2/g) were obtained by hydrothermally treating the nanotubes. The electrode made of nanoparticles were compared with that made of P-25. The cell anode constructed with different conducting glasses , dyes, TiO2 film thicknesses and additives were examined on the basis of the solar cell efficiency.

      By sensitizing the anode with mercurochrome and exposing under a light intensity of 83 mW/cm2, the electrode made of nanoparticles reached a efficiency of 2.05% with a film thickness of 3.9 m. While that made of P-25 reached 1.94% with a film thickness of 6.9 m. Using the nanoparticles dye-sensitized solar cells can have larger short-circuit current and efficiency than those using P-25. The high-surface-area nanocrystalline semiconductor materials developed in the present work have been shown to improve dye adsorption, thus leading to an increase of the solar cell efficiency.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1-1 前言 1 1-2 太陽能電池的種類 3 1-3 光伏效應(photovoltaic effect) 8 1-4 奈米結晶性多孔膜電極 (nanocrystalline porous electrode) 11 1-5 研究背景與目的 14 第二章 文獻回顧與理論說明 15 2-1 染料敏化太陽能電池 15 2-2 電子擴散模型 19 2-3 染料敏化劑 21 2-4 太陽電池之等效電路2 24 2-5 相對電極 26 2-6 氮氣吸附 27 第三章 實驗方法 33 3-1 藥品器材 33 3-2 實驗設備 34 3-3 TiO2奈米管和奈米顆粒及其paste製作與相關測試 36 3-3.1 二氧化鈦奈米管及其paste 37 3-3.2 二氧化鈦奈米顆粒及其paste 38 3-3.3 利用degussa P-25製備paste 38 3-3.4 氮氣物理吸脫附實驗 38 3-3.5 XRD繞射分析 39 3-3.6 SEM結構分析 39 3-3.7 TEM微結構分析 39 3-3.8 TGA熱重損失分析 40 3-4 染料敏化太陽能電池 40 3-4.1 二氧化鈦薄膜光電極製備 41 3-4.2 光電極試片表面觀察 41 3-4.3 薄膜厚度測定 41 3-4.4 染料吸附 41 3-4.5 紫外線─可見光吸收光譜儀 42 3-4.6 相對電極製作 42 3-4.7 電解質配製 43 3-4.8 太陽電池組裝 43 3-5 電池性能與電化學測試 44 3-5.1 測量系統 44 3-5.2 循環伏安測試(cyclic voltammogram, CV)46 46 3-5.3 交流阻抗分析46 46 第四章 結果與討論 48 4-1 二氧化鈦特性分析 48 4-1.1 氮氣吸脫附實驗 48 4-1.2 XRD分析 49 4-1.3 SEM分析 50 4-1.4 TEM微結構分析 51 4-2 染料敏化電池特性分析 52 4-2.1 光電極特徵 52 4-2.2 染料敏化電池之表現 54 4-2.3 電解質與相對電極之表現 56 第五章 結論與建議 82 5-1 結論 82 5-2 建議 83 第六章 參考文獻 84

    1. M. Grätzel, “Photoelectrochemical cells”, Nature, 414, 338, (2001).

    2. 莊家琛, “太陽能工程-太陽電池篇”, 全華, 台北市, 第一章、第二章, 民86.

    3. B. O’Regan, M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, 353, 737, (1991).

    4. 王釿鋊, “染料半導體光電池”, 中技社通訊, 41, 5, (2002).

    5. http://www.pv.unsw.edu.au/eff/

    6. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel, “Conversion of Light to Electricity by cis-X2Bis (2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes”, J. Am. Chem. Soc., 115, 6382, (1993).

    7. M. K. Nazeeruddin, P. Péchy, T. Renouard, S. M. Zakeerudin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, “Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar cells”, J. Am. Chem. Soc., 123, 1613, (2001).

    8. C. J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Grätzel, “Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applicayions”, J. Am. Ceram. Soc., 80, 3157, (1997).

    9. K. Hara, Y. Tachibana, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, H. Arakawa, “Dye-sensitized nanocrystalline TiO2 solar cells based on novel coumarin dyes”, Sol. Energy Mater. Sol. Cells, 77, 89, (2003).

    10. T. Horiuchi, H. Miura, S. Uchida, “Highly-efficient metal-free organic dyes for dye-sensitized solar cells”, Chem. Commun., 3036, (2003).

    11. N. Papageorgiou, Y. Athanassov, M. Armand, P. Bonhôte, H. Pettersson, A. Azam, M. Grätzel, “The Performance and Stability of Ambient Temperature Molten Salts for Solar Cell Applications”, J. Electrochem. Soc.,
    143, 3099, (1996).

    12. B. O’Regan, D. T. Schwartz, “Large Enhancement in Photocurrent Efficiency Caused by UV Illumination of the Dye-Sensitized Heterojunction TiO2/RuLL’NCS/CuSCN: Initiation and Potential Mechanisms”, Chem. Mater., 10, 1501, (1998).

    13. U. Bach, D. Lupo, P. Comte, J. E. Moser, F.
    Weissörtel, J. Salbeck, H. Spreitzer, M. Grätzel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photo-to-electron conversion efficiencies”, Nature, 395, 583, (1998).

    14. P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, M. Grätzel, “A stable Quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte”, Nature materials, 2, 402, (2003).

    15. C. Longo, A. F. Nogueira, M.-A. D. Paoli, “Solid-State and Flexible Dye-Sensitized TiO2 Solar cells: a Study by Electrochemical Impedance Spectroscopy”, J. Phys. Chem. B, 106, 5925, (2002).

    16. A. Kay, M. Grätzel, “Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder”, Sol. Energy Mater. Sol. Cells, 44, 99, (1996).

    17. N. J. Cherepy, G. P. Smestad, M. Grätzel, J. Z. Zhang, “Ultrafast Electron Injection: Implications for a Photoelectrochemical Cell Utilizing an Anthocyanin Dye-Sensitized TiO2 Nanocrystalline Electrode”, J. Phys. Chem. B, 101, 9342, (1997).

    18. D. Cahen, G. Hodes, M. Grätzel, J. F. Guillemoles, I. Riess, “Nature of Photovoltaic Action in Dye-Sensitized Solar Cells”, J. Phys. Chem. B, 104, 2053, (2000).

    19. M. Grätzel, “Sol-Gel Processed TiO2 Films for Photovoltaic Applications”, Journal of Sol-Gel Science and Technology, 22, 7, (2001).

    20. 張品全, “太陽電池”, 科學發展, 349, 22, (2002).

    21. 吳財福、張健軒、陳裕愷, “太陽能供電與照明系統綜論”, 全華, 台北市, 第二章, 民89.

    22. A. Hagfeldt, M. Grätzel, “Light Induced Redox Reactions in Nanocrystalline Systems”, Chem. Rev. 95, 49, (1995).

    23. K. Kalyanasundaram, M. Grätzel, “Applications of functionalized transition metal complexes in photonic and optoelectronic devices”, Coord. Chem.. rev., 77, 347, (1998).

    24. N.-G. Park, J. van de Lagemaat, A. J. Frank, “Comparison of Dye-sensitized Rutile- and Anatase-Based TiO2 Solar Cells”, J. Phys. Chem. B, 104, 8989, (2000).

    25. G. P. Smestad, M. Grätzel, “Demonstrating Electron Transfer and Nanotechnology: A Natural Dye-Sensitized Nanocrystalline Energy Converter”, J. Chem. Educ., 75, 752, (1998).

    26. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, “Formation of Titanium Oxide Nanotube”, Langmuir, 14, 3160, (1998).

    27. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K.
    Niihara, “Titania Nanotubes Prepared by Chemical Processing”, Adv. Mater., 11, 1307, (1999).

    28. P. Hoyer, “Formation of a Titanium Dioxide
    Nanotube Array”, Langmuir, 12, 1411, (1996).

    29. H. Imai, Y. Takei, K. Shimizu, M. Matsuda, H. Hirashima, “Direct preparation of anatase TiO2 nanotubes in porous alumina membranes”, J. Mater. Chem., 9, 2971, (1999).

    30. G. H. Du, Q. Chen, R. C. Che, Z. Y. Yuan, L.-M.
    Peng, “Preparation and structure analysis of titanium oxide nanotubes”, Appl. Phys. Lett., 79, 3702, (2001).

    31. Y. Q. Wang, G. Q. Hu, X. F. Duan, H. L. Sun, Q. K. Xue, “Microstructure and formation mechanism of titanium dioxide nanotubes”, Chem. Phys. Lett., 365, 427, (2002).

    32. Q. Chen, G. H. Du, S. Zhang, L.-M. Peng, “The structure of trititanate nanotubes”, Acta Crystallogr. Sec. B., B58, 587, (2002).

    33. M. Adachi, Y. Murata, M. Harada, S. Yoshikawa, “Formation of Titania Nanotubes with High Photo-Catalytic Activity”, Chem. Lett., 942, (2000).

    34. D. Matthews, P. Infelta, M. Grätzel, “Calculation of the photocurrent-potential characteristic for regenerative, sensitized semiconductor electrodes”, Sol. Energy Mater. Sol. Cells, 44, 119, (1996).

    35. Y. Diamant, S. G. Chen, O. Melamed, A. Zaban, “Core-Shell Nanoporous Electrode for Dye Sensitized Solar Cells: the effect of the SrTiO3 Shell on the Electronic Properties of the TiO2 Core”, J. Phys. Chem. B, 107, 1977, (2003).

    36. G. Hodes, “Electrochemistry of Nanomaterials”,
    Chapter 6, Wiley-VCH, Cambridge, (2001).

    37. S. Södergren, A. Hagfeldt, J. Olsson, S.-E. Lindquist, “Theoretical Models for the Action Spectrum and the Current-Voltage Characteristics of Microporous Semiconductor Films in Photoelectrochemical Cells”, J. Phys. Chem., 98, 5552, (1994).

    38. G. Franco, J. Gehring, L. M. Peter, E. A. Ponomarev, I. Uhlendorf, “Frequency-Resolved Optical Detection of Photoinjected Electrons in Dye-sensitized Nanocrystalline Photovoltaic Cells”, J. Phys. Chem., 103, 692, (1999).

    39. G. Schlichthörl, N. G. Park, A. J. Frank, “Evaluation of the Charge-Collection Efficiency of Dye-sensitized Nanocrystalline TiO2 Solar Cells”, J. Phys. Chem., 103, 782, (1999).

    40. A. Hagfeldt, M. Grätzel, “Molecular Photovoltaics”, Acc. Chem. Res., 33, 269, (2000).

    41. G. J. Meyer, “Efficient Light-to Electrical Energy Conversion: Nanocrystalline TiO2 Films Modified with Inorganic Sensitizers”, J. Chem. Educ., 74, 652, (1997).

    42. N. Papageorgiou, W. F. Maier, M. Grätzel, “An Iodine/Triiodide Reduction Electrocatalyst For Aqueous and Organic Media”, J. Electrochem. Soc., 144, 876, (1997).

    43. G. Ertl, H. Knözinger, J. Weitkamp, “ Handbook of Heterogeneous Catalysis ”, vol 3, VCH D-69451 Weinheim, 1508, (1997)

    44. S. Brunaller, P.H. Emmett, E. Teller, J. Am. Chem. Soc., 60, 390, (1938).

    45. E. P. Barrett, L.G. Joyner, P.P. Halenda, , J. Am. Chem. Soc., 73, 373, (1951).

    46. A. Hauch, A. Georg, “Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells”, Electrochim. Acta., 46, 3457, (2001).

    47. L. Kavan, M. Grätzel, J. Rathouský, A. Zukal, “Nanocrystalline TiO2 (Anatase) Electrodes: Surface Morphology, Adsorption, and Electrochemical Properties”, J. Electrochem. Soc., 143, 394, (1996).

    48. D.-S. Seo, J.-K. Lee, H. Kim, “Preparation of nanotube-shaped TiO2 powder”, J. Cryst. Growth., 229, 428, (2001).

    49. K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama,
    H. Sugihara, H. Arakawa, “Highly Efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells”, Sol. Energy Mater. Sol. Cells, 64, 115, (2000).

    50. K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Arakawa, “Influence of electrolytes on the photovoltaic performance of organic dye-sensitized nanocrystalline TiO2 solar cells”, Sol. Energy Mater. Sol. Cells, 70, 151, (2001).

    下載圖示 校內:2006-07-30公開
    校外:2006-07-30公開
    QR CODE