簡易檢索 / 詳目顯示

研究生: 江桓德
Chiang, Huan-Te
論文名稱: 披覆不同碳層之奈米磷酸鋰鐵之製備及其於鋰離子電池之應用
Preparation of Different Carbon Coating on Nano-size LiFePO4 Applied for Lithium-ion Battery
指導教授: 郭炳林
Kuo, Ping-Lin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 86
中文關鍵詞: 鋰離子電池磷酸鋰鐵溶劑熱法陰極材料奈米粒子
外文關鍵詞: Lithium ion battery, Lithium iron phosphate, solvothermal method, cathode material, nano-particle
相關次數: 點閱:80下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本論文以溶劑熱法合成出奈米尺寸的磷酸鋰鐵,再選取蔗糖、樹脂、石墨烯等碳材披覆於磷酸鋰鐵表面,經高溫碳化以製備LFePO4/C陰極複合材料。
    使用不同碳源比例及在不同溫度下碳化,會直接影響磷酸鋰鐵外觀形態。實驗中以X-光繞射儀測量材料的晶格結構,由掃描式電子顯微鏡及穿透式電子顯微鏡觀察材料的外觀型態,由結果可知碳層披覆可避免磷酸鋰鐵高溫燒結,依然可以維持奈米尺寸。以鈕扣型電池進行LiFePO4/C 複合陰極材料循環充放電測試,在10C高速放電速率下,磷酸鋰鐵披覆樹脂碳化層材料在700 oC鍛燒的樣品電容值為80 mAh g-1,而磷酸鋰鐵披覆蔗糖碳化層摻雜石墨烯系統在500 oC鍛燒的樣品之電容值為101 mAh g-1。

    Abstract
    LiFePO4 nanoparticles (NLFP, <100 nm in size) have been synthesized by solvothermal method in ethylene glycol (EG) using H3PO4, LiOH‧H2O and FeSO4‧7H2O as precursors. Sucroses, resins or graphite oxide was chosen to be the carbon sources and was coated on the surface of LiFePO4 (NLFP/C).
    The crystal structures verified by XRD showed these nanoparticles had uniform size distribution and were composed of many densely aggregated nanoparticles. The morphology of the NLFP particles was strongly dependent on synthetic parameters such as the amount of carbon source and carbonized temperature.
    The charge-discharge cycling performances of the NLFP/C composite material were demonstrated by using coin cells. When using discharge rate at 10C, the capacity of NLFP coated by resins maintained at 80 mAh g-1 and the capacity of NLFP coated by sucrose and graphite oxide maintained at 101 mAh g-1。

    目錄 摘要 I Abstract II 誌謝 III 目錄 V 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1 前言 1 1.2 陰極材料的發展 5 1.2.1 LiCoO2層狀結構材料 5 1.2.2 LiNiO2層狀結構材料 7 1.2.3 LiMn2O4尖晶石結構材料 7 1.2.4 LiFePO4橄欖石結構材料 8 1.3 陽極材料的發展 9 1.3.1 碳材陽極材料 9 1.3.2. 非碳材陽極材料 10 第二章 文獻回顧 12 2.1 磷酸鋰鐵陰極材料的介紹 12 2.2. LiFePO4合成方法 15 2.2.1. 固態反應法 15 2.2.2. 溶膠-凝膠法 16 2.2.3. 溶劑熱法 18 2.3. LiFePO4材料改質 22 2.3.1. 縮小尺寸(Size reduction) 22 2.3.2. 表面披覆導電層 23 2.3.3. 異相元素摻雜 24 2.4. 實驗動機 25 第三章 實驗部分 26 3.1 實驗藥品 26 3.2. 儀器設備 28 3.3 鋰離子電池陰極材料合成 29 3.3.1 NLFP 陰極材料之合成 29 3.3.2 NLFP表覆蔗糖碳源複合陰極材料之合成 30 3.3.3 NLFP表覆樹脂碳源複合陰極材料之合成 30 3.3.4 氧化石墨烯 (Graphite Oxide, GO)之製備 30 3.3.5 NLFP混摻石墨烯複合陰極材料之合成 30 3.3.6 NLFP表覆蔗糖碳源混摻石墨烯複合陰極材料之合成 31 3.3.7 NLFP表覆樹脂碳源混摻石墨烯複合陰極材料之合成 31 3.4 材料性質分析 34 3.4.1 X光繞射儀(XRD) 34 3.4.2. 掃描式電子顯微鏡(SEM) 34 3.4.3. 穿透式電子顯微鏡(TEM) 35 3.5. 電化學性質量測 36 3.5.1. 陰極極片之製作 36 3.5.2. 鈕扣型電池組裝 37 3.5.3. 充放電測試( C-rate Test) 37 3.5.4. 交流阻抗分析 (AC impedance analysis) 37 第四章 結果與討論 39 4.1. NLFP/C複合陰極材料X光繞射結構分析 40 4.1.1. 單一碳源系列的晶型探討 40 4.1.2. 雙重碳源系列的XRD晶型探討 41 4.2. 掃描式電子顯微鏡(SEM)觀察 45 4.2.1. 單一碳源系列的SEM圖探討 46 4.2.2. 雙重碳源系列的SEM圖探討 50 4.3. 穿透式電子顯微鏡(TEM)觀察 53 4.3.1. 單一碳源系列的TEM圖探討 54 4.3.2. 雙重碳源系列的TEM圖探討 57 4.4. 鈕扣型電池充放電性能測試 60 4.4.1. NLFP電化學性能分析 60 4.4.2. NLFP-S系列電化學性能分析 62 4.4.3. NLFP-R系列電化學性能分析 65 4.4.4. NLFP-G系列電化學性能分析 68 4.4.5. NLFP-GS系列電化學性能分析 71 4.4.6. NLFP-GR系列電化學性能分析 74 4.5. 交流阻抗分析(AC impedance analysis) 78 第五章 結論 80 第六章 參考文獻 81

    參考文獻
    1. L. Ji, Z. Lin, M. Alcoutlabi, X. Zhang, Energy Environ. Sci., 4, 2682(2011)
    2. K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, Mater. Res. Bull. 15, 783 (1980).
    3. M. M. Thackeray, Nature mater., 1, 81(2002).
    4. J. Cho, Y. J. Kim, T. -J. Kim, and B. Park, Angew. Chem. Int. Ed. 40, 3367 (2001).
    5. J. Cho, Y. J. Kim, and B. Park, Chem. Mater. 12, 3788 (2000).
    6. J. Cho, C. -S. Kim, S. -I. Yoo, Electrochem. Solid-State Lett. 3, 362 (2000)
    7. L. D. Dyer, B. S. Borie, G. P. Smith, J. Am. Chem. Soc.,78 1499(1954)
    8. M.M. Thackeray, W.I.F. David, P.G. Bruce, J.B. Goodenough, Mat. Res. Bull., 18, 461(1983)
    9. R. J. Gummow, A. d. Kock, M.M. Thackeray, Solid State Ionics, 69, 59(1994)
    10. J. O. Besenhard,”Handbook of Battery Materials”, Wiley-vch, p.293
    11. M. M. Thackeray, The Electrochemical Society Proceedings, 94-28 233.
    12. M. S. Whittimgham, R. Chen, T. Chirayil, P. Zavalij, Solid State Ionics, 94, 227(1997)
    13. D. Rahner, S. Machill, H. Schreiber, K. Siury, M. Klob, W. Plieth, Solid State Ionics, 86, 891(1996)
    14. J. Baker, R. Pynemburg, R. Koksbang, J. Power Source, 52, 184(1994)
    15. G. T. K. Fey, W. Li, J. R. Dahn, J. Electrochem. Soc., 141, 2279(1994)
    16. M. Winter, J.O. Besenhard, Electrochem Acta, 45, 31(1999)
    17. B. Veeraraghavan, A. Durairajan, B. Haran, B. Popov, R. Guidotti, J. Eletrochem. Soc., 149, A675(2002)
    18. W. R. Liu, Z. Z. Guo, W.S. Young, D.T. Shieh, H.C. Wu, M.H. Yang, N. L. Wu, J.Power Sources, 140, 139(2005)
    19. J. Xie, G. S. Cao, X. B. Zhao, Mater. Chem. Phys., 88, 295(2004)
    20. J. Niu, J. Y. Lee, Electrochem. Solid-State Lett., 5, A107(2002)
    21. Akira Yoshino, “These Ten Years and Feature of Rechargeable Battery Materials” (2003) 110.
    22. A. K. Padhi, K. S. Nanjundaswamy and J. B. Goodenough, J. Electrochem. Soc., 144, 1188 (1997)
    23. N. Raver, Y. Chouinard, J. F. Magnan, S. Besner, M. Gauthier, M. Armand, J. Power Source. 97, 503(2001)
    24. J. Wang and X. Sun. Energy Environ. Sci., 5, 5163 (2012)
    25. P. Tang, N. A. W. Holzwarth, Phys. Rev. B, 68, 165107 (2003)
    26. S. Okada, S. Sawa, M. Egashira, J. Yamaki, M. Tabuchi, H. Kageyama, T. Konishi and A. Yoshino, J. Power Sources, 97–98, 430–432 (2001)
    27. J. Molenda, A. Stoklosa and T. Bak, Solid State Ionics, 36, 53 (1989)
    28. Y. Shimakawas, T. Numata and J. Tabuchi, J. Solid State Chem., 131, 138(1997).
    29. S. Y. Chung, J. T. Bloking and Y. M. Chiang, Nat. Mater., 1,123 (2002)
    30. D. Morgan, A. Van der Ven, G. Ceder, Electrochem. Solid-State Lett., 7, A30 (2004)
    31. C. Ouyang, S. Shi, Z. Wang, X. Huang, L. Chen, Phys. Rev B, 69, 104303 (2004)
    32. J. Xie, N. Imanishi, T. Zhang, A. Hirano, Y. Takeda and O. Yamamoto, Electrochim. Acta, 54, 4631 (2009)
    33. 黃可龍、王兆翔、劉素琴, 鋰離子電池原理與技術 (2010)
    34. H. Huang, S.C. Yin, L. F. Nazar, Electrochem. Solid-State Lett., 4, A170(2001)
    35. D. Wang, X. Wu, Z. Wang, L. Chen, J. Power Sources, 140, 125(2005)
    36. F. Croce, A. D. Epifanio, J. Hassoun, A. Deptula, T. Olczac, B. Scrosati, Electrochem. Solid-State Lett.,5, A47(2002)
    37. X. Qin, X. Wang, H. Xiang, J. Xie, J. Li, Y. Zhou, J. Phys. Chem. C. 114, 16806(2010)
    38. Y. Xia, W. Zhang, H. Huang, Y. Gan, J. Tian, X. Tao, J. Power Sources, 196, 5651(2011)
    39. J. Wang, X. Sun, Energy Environ. Sci., 5, 5163(2012)
    40. A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, ECS Meeting Abstract, 58, Los Angeles, CA., May 5-10, 1996, vol. 96-1.
    41. A. S. Arico, P. G. Bruce, B. Scrosati, J. M. Tarascon and W. Van Schalkwijc, Nat. Mater., 4, 366(2005)
    42. P. G. Bruce, B. Scrosati and J. M. Tarascon, Angew. Chem. Int. Ed., 47, 2930 (2008)
    43. A. S. Andersson, J. O. Thomas, B. Kalska and L. Haggstrom, Electrochem. Solid-State Lett., 3, 66 (2000).
    44. W. J. Zhang, J. Power Sources, 196, 2962 (2011)
    45. W. J. Zhang, J. Electrochem. Soc., 157, A1040 (2010)
    46. S. F. Yang, P. Y. Zavalij and M. S. Whittingham, Electrochem. Commun., 3, 505 (2001)
    47. F. Croce, A. D. Epifanio, J. Hassoun, A. D. T. Olczac and B. Scrosati, Electrochem. Solid-State Lett., 5, A47 (2002)
    48. A. Fedorková, R. Oriňáková, A. Oriňák, H.-D. Wiemhöfer, D. Kaniansky and M. Winter, J. Solid State Electrochem., 14, 2173 (2009)
    49. N. Ravet, J. B. Goodenough, S. Besner, M. Simoneau, P. Hovington and M. Armand, The Electrochemical Society Meeting, Honolulu, HI, Oct. 17–22, 1999, vol. 99–2, Abstract 127.
    50. N. Ravet, S. Besner, M. Simoneau, A. Vallée, M. Armand and J. F. Magnan, US Pat., 6855273, 2005; 6962666, 2005; and 7344659, 2008.
    51. N. Ravet, Y. Chouinard, J. F. Magnan, S. Besner, M. Gauthier and M. Armand, J. Power Sources, 97–98, 503 (2001)
    52. H. Huang, S. C. Yin and L. F. Nazar, Electrochem. Solid-State Lett., 4, A170 (2001)
    53. N. Ravet, J.-F. Magnan, M. Gauthier and M. Armand, International Conference on Materials for Advanced Technologies (ICMAT 2001), MRS Singapore, July 1–6, 2001.
    54. M. Armand, M. Gauthier, J. F. Magnan and N. Ravet, PCT WO 02/27823 and WO 01/27824.
    55. M. Gauthier, D. Geoffroy, M. Armand and N. Ravet, The 20th International Seminar on Primary and Secondary Batteries, Florida Educational Seminar Inc., Boca Raton, Florida, USA, March 17–20, 2003, www.POWERSOURCES.NET, info@powersources.net or from the authors.
    56. C. Zhu, Y. Yu, L. Gu, K. Weichert and J. Maier, Angew. Chem., Int. Ed., 50, 6278 (2011)
    57. 58 K. Saravanan, J. J. Vittal, M. V. Reddy, B. V. R. Chowdari and P. Balaya, J. Solid State Electrochem., 14, 1755 (2010)
    58. N. Meethong, Y. H. Kao, S. A. Speakman, Y. M. Chiang, Adv. Funct. Mater. 19, 1060 (2009)
    59. J. F. Ni, H. H. Zhou, J. T. Chen, X. X. Zhang, Mater. Lett., 59, 2361 (2005)
    60. X. Ou, G. Liang, L. Wang, S. Xu, X. Zhao, J. Power Sources,184, 543 (2008)
    61. H. Liu, C. Li, Q. Cao, Y. P. Wu and R. Holze, J Solid State Electrochem, 12, 1017 (2008)
    62. C.S. Sun, Z. Zhou, Z.G. Xu, D.G. Wang, J.P. Wei, X.K. Bian, J. Yan, J. Power Sources, 193, 841 (2009)
    63. M. Zhang, L. F. Jiao, H. T. Yuan, Y. M. Wang, J. Guo, M. Zhao, W. Wang, X. D. Zhou, Solid State Ionic, 177, 3309 (2006)
    64. J.B. Heo, S.B. Lee, S.H. Cho, J. Kim, S.H. Park, Y.S. Lee, Mater. Lett., 63, 581 (2009)
    65. S. Y. Chung, J. T. Blocking, Y. M. Chiang, Nature Mater., 1, 123 (2002)
    66. S. Y. Chung, Y. M. Chiang, Electrochem. Solid State Lett., 6, A278 (2003)
    67. Y. Wang, Y. Wang, E. Hosono, K. Wang and H. Zhou, Angew. Chem., Int. Ed., 47, 7461(2008)
    68. Y.H. Rho, L. F. Nazar, L. Perry, D. Ryan, J. Electrochem.Soc. , 154 ,283 (2007)
    69. H.C. Shin, W.I. Cho and H. Jang, Electrochim. Acta , 52, 1472 (2006)
    70. L. Kavan, D. Fattakhova, P. Krtil, J. Electrochem. Soc. 146, 1375(1999)

    下載圖示 校內:2017-08-10公開
    校外:2017-08-10公開
    QR CODE