| 研究生: |
陳達修 Chen, Da-Siou |
|---|---|
| 論文名稱: |
合成孔洞金屬矽酸鹽與金屬氧化物顆粒狀材料在溫室氣體去除之研究 A Study on the Synthesis of Porous Metal Silicate and Metal Oxide Granular Materials for Removal of Greenhouse Gases |
| 指導教授: |
林弘萍
Lin, Hong-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 溫室氣體 、氨氮吸附 、笑氣分解反應 、二氧化碳氫化反應 、造粒 |
| 外文關鍵詞: | greenhouse gas, ammonia nitrogen adsorption, laughing gas decomposition reaction, carbon dioxide hydrogenation reaction, granulation |
| 相關次數: | 點閱:121 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要分為三大部分,第一部分以矽酸鐵/氧化鋁粒狀材料吸附養豬業廢水中的氨氮,測試其吸附效能,並且進行動力學模型的擬合以及推斷其吸附機制。第二部分以氧化銅/四氧化三鐵/氧化鋅粒狀觸媒進行笑氣催化分解反應與氫氣/甲烷低溫催化燃燒。第三部分為氧化銅/氧化鋅/氧化鋁粒狀觸媒,計畫將其應用於二氧化碳氫化生產甲醇的反應上。
第一部分是以氧化鋁為載體讓矽酸鐵異相成核在載體的表面上,使過濾的效率更高,也可增加矽酸鐵粒子的分散性,增加吸附活性位點的接觸面積。此外,氧化鋁的表面具有酸性位點可幫助氨氮分子的吸附。利用海藻酸鈉和多價數離子反應,可以製成粒狀材料,和粉末狀材料相比之下,具有易儲存、易分離、低背壓、低危險的優點。以氯化鈣的鈣離子作為造粒的金屬離子來源,成分較為環保。
第二部分是以氧化鋅作為催化載體,讓氫氧化鐵異相成核在載體表面上,使催化活性位點分布更均勻。氧化鋅的表面具有氧空缺,有助於笑氣(N2O)分子氮氧鍵結的斷裂,進而將笑氣轉化成氮氣。此外,四氧化三鐵對笑氣催化分解反應的催化活性比三氧化二鐵更高,氧化鋅與四氧化三鐵的晶格匹配度夠高,使四氧化三鐵在粒狀觸媒煅燒後能在載體表面生成。以上特點使氧化鋅和其他載體例如二氧化鈦、氧化鋁、二氧化鋯相比之下有更高的催化效能。本材料以硝酸銅/硝酸鎳作為造粒的金屬離子來源,和貴重金屬相比之下價格低廉,在催化表現上相當高。本研究也嘗試將部分的鐵離子置換為鈷離子,但參雜鈷離子的材料在催化表現上較差,硝酸鈷的價格也比硝酸鐵高很多。為了讓材料能夠量產,本研究進行製程改良,將碳酸鉀和氧化鋅水溶液混合後再滴入硝酸鐵溶液,用此方法合成的粒狀觸媒也有高催化效能,未來將以此方式進行觸媒量產。
第三部分是以氧化鋅混合煅燒500°C後的氧化鋁作為觸媒載體,分散在水中以後進行100°C水熱反應一天,室溫冷卻後加入海藻酸鈉,待海藻酸鈉溶解後就滴入硝酸銅溶液中,進行烘乾、煅燒500°C即可。氧化鋁的添加可提升粒狀觸媒的硬度與比表面積,對氧化鋁進行煅燒可使顆粒的硬度更高;藉由水熱反應也可以提升粒狀觸媒的硬度。此合成方式操作容易,不須進行異相成核就能將氧化銅擔載於載體表面上。計畫在未來將此材料應用於二氧化碳氫化產生甲醇的催化反應上。
The booming industry has brought great convenience to human beings, but also cause a great harm to the environment. To achieve sustainable development of the environment, and in the hope of mass production of materials for practical applications, this study aims to solve three major problems by synthesizing catalysts in a low-cost and simple process. These are (1) adsorption of ammonia nitrogen from agricultural wastewater by iron silicate/alumina granular adsorbent. (2) catalytic decomposition of high flow rate and high concentration of powerful greenhouse gas N2O at 500°C with copper oxide/iron(II,III) oxide/zinc oxide granular catalysts. (3) using copper oxide/zinc oxide/aluminum oxide granular catalyst to hydrogenate carbon dioxide to produce methanol for achieving net zero carbon emissions. In addition, the copper oxide/iron(II,III) oxide/zinc oxide granular catalyst can completely combust the high explosive hazard hydrogen and methane in the wafer process exhaust at 300°C. To solve the problems of powder type materials, such as difficult storage, difficult separation, high back pressure in the reaction chamber, and dust explosion risk, our laboratory granulates the catalysts by rapid cross-linking reaction of natural and environmentally friendly sodium alginate and cations of multiple-charge. The granular catalyst can be loaded with a high percentage of catalytically active metal oxides after high temperature calcination.
1. Lee, C.-g., T.D. Fletcher, and G. Sun, Nitrogen removal in constructed wetland systems. Engineering in Life Sciences, 9(1): p. 11-22, (2009).
2. 張冠甫, 徐., 黃盟舜, 李茂松, 張王冠. 氨氮廢水處理與回收技術及案例. 2013;Available from: https://proj.ftis.org.tw/eta/epaper/PDF/120-02v1.pdf.
3. Konsolakis, M., Recent Advances on Nitrous Oxide (N2O) Decomposition over Non-Noble-Metal Oxide Catalysts: Catalytic Performance, Mechanistic Considerations, and Surface Chemistry Aspects. ACS Catalysis, 5(11): p. 6397-6421, (2015).
4. SiC 半導體. Available from: https://www.rohm.com.tw/electronics-basics/sic/sic_what1.
5. 台灣智慧移動產業協會. 歐盟淨零轉型下「碳關稅」將登場,台灣汽機車零組件外銷首當其衝. 2021; Available from: https://www.thenewslens.com/article/157912.
6. Jiang, X., et al., Recent Advances in Carbon Dioxide Hydrogenation to Methanol via Heterogeneous Catalysis. Chemical Reviews, 120(15): p. 7984-8034, (2020).
7. Liu, L., et al., Mechanistic study of methanol synthesis from CO2 hydrogenation on Rh-doped Cu(111) surfaces. Molecular Catalysis, 466: p. 26-36, (2019).
8. Zhang, X., et al., Optimum Cu nanoparticle catalysts for CO2 hydrogenation towards methanol. Nano Energy, 43: p. 200-209, (2018).
9. Haruta, M., et al., Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. Journal of Catalysis, 115(2): p. 301-309, (1989).
10. Nares, R., et al., Ni/Hβ-Zeolite Catalysts Prepared by Deposition−Precipitation. The Journal of Physical Chemistry B, 106(51): p. 13287-13293, (2002).
11. Garcia, F.A.C., et al., Synthesis and characterization of CuO/Nb2O5/MCM-41 for the catalytic oxidation of diesel soot. Microporous and Mesoporous Materials, 113(1): p.562-574, (2008).
12. Plabst, M., L.B. McCusker, and T. Bein, Exceptional Ion-Exchange Selectivity in a Flexible Open Framework Lanthanum(III)tetrakisphosphonate. Journal of the American Chemical Society, 131(50): p. 18112-18118, (2009).
13. Chi, Y., et al., Synthesis and Characterization of Fluorinated Aminoalkoxide and Iminoalkoxide Gallium Complexes: Application in Chemical Vapor Deposition of Ga2O3 Thin Films. Organometallics, 23(1): p. 95-103, (2004).
14. Catalyst support. 2022 ; Available from:https://en.wikipedia.org/wiki/Catalyst_support
15. Dodoo Arhin, D., et al., Awaso Bauxite Red Mud-Cement Based Composites: Characterisation for Pavement Applications. Case Studies in Construction Materials, 7, (2017).
16. Shirai, T., et al., Structural properties and surface characteristics on aluminum oxide powders. Ceramics Research Lab, 9: p. 23-31, (2009).
17. Karl Wefers, C.M., Oxides and hydroxides of aluminum. Alcoa Technical Paper, 19, (1987).
18. Kovarik, L., M. Bowden, and J. Szanyi, High temperature transition aluminas in δ-Al2O3/θ-Al2O3 stability range: Review. Journal of Catalysis, 393: p. 357-368, (2021).
19. Zinc oxide. 2022; Available from: https://en.wikipedia.org/wiki/Zinc_oxide.
20. Liu, Y. and W. Gao, Growth process, crystal size and alignment of ZnO nanorods synthesized under neutral and acid conditions. Journal of Alloys and Compounds, 629: p. 84-91, (2015).
21. Wang, J., et al., Oxygen Vacancy Induced Band-Gap Narrowing and Enhanced Visible Light Photocatalytic Activity of ZnO. ACS Applied Materials & Interfaces, 4(8): p. 4024-4030, (2012).
22. Okram, G. What is the true definition of "Oxygen vacancy" in magnetic nanoparticles? 2015; Available from: https://www.researchgate.net/post/what_is_the_true_definition_of_Oxygen_vacancy_in_magnetic_nanoparticles.
23. Moharramzadeh Goliaei, E. and N. Seriani, N2O decomposition on Ti3O6 deposited on anatase(101) from first-principles calculations: The role of oxygen vacancy†. Applied Surface Science, 579: p. 152215, (2022).
24. Zhang, B., S. Zhang, and B. Liu, Effect of oxygen vacancies on ceria catalyst for selective catalytic reduction of NO with NH3. Applied Surface Science, 529: p.147068, (2020).
25. Song, W., et al., Unraveling the structure–sensitivity of the photocatalytic decomposition of N2O on CeO2: a DFT+U study. Journal of Materials Chemistry A, 6(39): p. 19241-19255, (2018).
26. 馬振基, 奈米材料科技原理與應用. 2003, 全華科技圖書.
27. Walton, R.I., Subcritical solvothermal synthesis of condensed inorganic materials. Chemical Society Reviews, 31(4): p. 230-238, (2002).
28. Laudise, R.A., Hydrothermal Synthesis of Single Crystals, in Progress in Inorganic Chemistry. p. 1-47, (1962).
29. Hu, C., et al., Ions-induced gelation of alginate: Mechanisms and applications. International Journal of Biological Macromolecules, 177: p. 578-588, (2021).
30. 海藻酸. 2022; Available from: https://zh.wikipedia.org/zh-tw/%E6%B5%B7%E8%97%BB%E9%85%B8.
31. 王進威. 中子粉末繞射簡介及其應用. 2021; Available from: https://www.cx.com.tw/modules/news/article.php?storyid=75.
32. Yang, S., et al., Evolution of nanopore structure in lacustrine organic-rich shales during thermal maturation from hydrous pyrolysis, Minhe Basin, Northwest China. Energy Exploration & Exploitation, 36, (2017).
33. Mass Flow Controller. 2022; Available from: https://en.wikipedia.org/wiki/Mass_flow_controller.
34. 黃森源. 我國畜產生技之現況與展望. 2002; Available from: https://www.coa.gov.tw/ws.php?id=4198.
35. Ammoniacal nitrogen. 2019; Available from: https://en.wikipedia.org/wiki/Ammoniacal_nitrogen.
36. 孫甯媯, 氧化矽及矽酸鐵孔洞材料在牙本質小管填補及鍶離子吸附應用之研究. 2020.
37. Ström, L., et al., Surface Species and Metal Oxidation State during H2-Assisted NH3-SCR of NOx over Alumina-Supported Silver and Indium. Catalysts, 8(1): p. 38, (2018).
38. Simonin, J.-P., On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chemical Engineering Journal, 300:p. 254-263, (2016).
39. Wu, F.-C., R.-L. Tseng, and R.-S. Juang, Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chemical Engineering Journal, 153(1): p. 1-8, (2009).
40. An, B., Cu(II) and As(V) Adsorption Kinetic Characteristic of the Multifunctional Amino Groups in Chitosan. Processes, 8(9): p. 1194, (2020).
41. Zhang, X., et al., Effective catalytic decomposition of nitrous oxide over highly active and stable bimetallic CoIn-mordenite zeolite. Journal of Molecular Catalysis A:Chemical, 395: p. 202-209, (2014).
42. Wodrich, M.D., et al., The Genesis of Molecular Volcano Plots. Accounts of Chemical Research, 54(5): p. 1107-1117, (2021).
43. Zhao, K., et al., Unraveling and optimizing the metal-metal oxide synergistic effect in a highly active Cox(CoO)1–x catalyst for CO2 hydrogenation. Journal of Energy Chemistry, 53: p. 241-250, (2021).
44. Kim, M.-J., et al., Catalytic decomposition of N2O over cobalt based spinel oxides:The role of additives. Molecular Catalysis, 442: p. 202-207, (2007).
45. Amrousse, R., et al., N2O catalytic decomposition over nano-sized particles of Cosubstituted Fe3O4 substrates. Applied Catalysis A: General, 450: p. 253-260, (2013).
46. Paul, M., et al., Fe3O4/ZnO: A high-quality magnetic oxide-semiconductor heterostructure by reactive deposition. Applied Physics Letters, 98(1): p. 012512, (2011).
47. Wang, Z. and L. Wang, Role of oxygen vacancy in metal oxide based photoelectrochemical water splitting. EcoMat, 3(1): p. e12075, (2021).
48. 邱耀平. 低碳排流體化床技術之開發與應用計畫. 2017; Available from: https://km.twenergy.org.tw/Knowledge/knowledge_more?id=3276.
49. Xiao, K., et al., For Better Industrial Cu/ZnO/Al2O3 Methanol Synthesis Catalyst: A Compositional Study. Catalysis Letters, 147, (2017).
50. Behrens, M., et al., Performance Improvement of Nanocatalysts by Promoter-Induced Defects in the Support Material: Methanol Synthesis over Cu/ZnO:Al. Journal of the American Chemical Society, 135(16): p. 6061-6068, (2013).
51. Cai, W., J. Yu, and S. Mann, Template-free hydrothermal fabrication of hierarchically organized γ-AlOOH hollow microspheres. Microporous and Mesoporous Materials, 122(1): p. 42-47, (2009).