| 研究生: |
葛聰智 Ko, Tsung-Chih |
|---|---|
| 論文名稱: |
聚合物穩定膽固醇液晶結構薄膜光電特性及繞射現象之研究 Studies of the Electro-optic Characteristics and the Diffraction of Polymer-stabilized Cholesteric Texture (PSCT) Films |
| 指導教授: |
傅永貴
Fuh, Ying-Guey Andy |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 液晶 、膽固醇液晶 |
| 外文關鍵詞: | Cholesteric LC, Liquid Crystal, PSCT |
| 相關次數: | 點閱:103 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
聚合物穩定膽固醇液晶結構薄膜(Polymer-stabilized Cholesteric Texture簡稱PSCT)是近年來最廣為探討的液晶元件之一。其主要是以聚合物枝條來穩定膽固醇液晶之結構,當外加電場時膽固醇液晶的結構會隨著變化,進而可達成顯示之目的。
在本論文中,我們為達PSCT光電特性之最佳化,嘗試了多種不同中間基長度之monomer,並找出最合適之monomer種類及濃度比率。也將SmC* 液晶加入材料中,觀察其對PSCT光電特性之影響。結果顯示加入SmC*會使polymer network分布變得更均勻密集,故使PSCT之Vth降低、 變大。
另外,我們以表面配向材料取代polymer來穩定膽固醇液晶之結構,並成功地製成SSCT元件(Surface-stabilized Cholesteric Texture)。
最後,我們發現PSCT cell之繞射形成似Qu’etelet環圖案,並量測繞射形成中其強度之動態變化。我們證實了繞射訊號是經由cell中之「focal conic domain液晶」及「polymer network枝條」對Ar+雷射之散射所造成。故此繞射強度之變化隱含了PSCT cell之polymer network枝條的生長狀態及cholesteric液晶於cell之texture狀態的訊息。此外,量測第一階光強與外加電壓之關係發現與其光電特性相關,所以此繞射強度變化之量測提供了一種對PSCT元件之非破壞性解析方式。
Polymer-stabilized Cholesteric Textures (PSCT) have been extensively studied in recent years. Primarily, the formed polymer networks can stabilize the textures of cholesteric LC domains. The fabricated PSCT film can be controlled with the application of a voltage to achieve various transmittance states, thus is potential for use as a display.
To optimize the electro-optic characteristics of a PSCT device, we use some monomers with various lengths of rigid core. The most optimum one and the concentration ratio of monomer to LC is deduced in this thesis. We also study the effect of the doping of SmC* in a PSCT sample. The results show that the distribution of the polymer networks become more uniform after doping of SmC*. Thus, the threshold voltage, Vth, reduces and the hysteresis width, DV, rises in the PSCT device.
Also, we have successfully fabricated the Surface-Stabilized Cholesteric Texture (SSCT) devices. The role of the polymer network is replaced by the surface alignment treatment.
Finally, we have performed the diffraction from the PSCT films, forming the Qu’etele-type ring pattern. We measure the dynamic change of the first-order diffraction intensities during polymerization of a sample. After polymerization, both the electro-optical characteristics and the diffracted intensities of various orders are measured. We conclude that the diffraction is attributable to the scattering of the light from the “focal conic domains of cholesteric LC” and the “the clusters of the polymer networks” in the PSCT cells. The variation of the first-order diffraction intensities as a function of the applied voltage is found to correlate with that of the electro-optical characteristics of PSCT cells. Thus, the diffraction measurements could provide us with another qualitative, nondestructive method to analyze PSCT devices.
[1] E. B. Priestley, Peter J. Wojtowicz and Ping Sheng, Introduction to Liquid Crystals, Plenum Press, New York (1975).
[2] Peter J. Collings and Michael Hird, Introduction to Liquid Crystals Chemistry and Physics, (2001).
[3] S. Chandrasekhar and F. R. S., Liquid Crystals, 2nd ed., Cambridge University Press, Cambridge (1992).
[4] 朱自強,王仕璠,蘇顯渝, 現代光學教程, 四川大學出版社, 成都 (1990)
[5] P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed., Clarendon Press, Oxford (1993).
[6] Gregory Philip Crawford and Slobodan Žumer, Liquid Crystals in Complex Geometries --- Formed by polymer and porous networks, Taylor & Francis, (1996).
[7] Y. –K. Fung, PhD thesis, Kent state University, (1994).
[8] Andy Ying-Guey Fuh, Chi-Yen Huang, Jyn-Chin Lin, Chi-Huang Lin and Tsung-Chih Ko, Mol. Cryst. and Liq. Cryst., 358, 251 (2001).
[9] Birendra Bahadur, Liquid Crystals -- Applications and Uses, Vol. 3, World Scientific Press, Singapore (1992).
[10] Z. Lu, PhD thesis, Kent state University, (1995).
[11] B. -G. Wu, J. H. Erdmann and J. W. Doane, Liq. Cryst., 5, 1453 (1989).
[12] Tsung-Chih Ko, Yun-Hsing Fan, Ming-Feng Shien, Andy Ying-Guey Fuh, Chi-Yen Huang, Ming-Shann Tsai and I-Min Jiang, Jpn. J. Appl. Phys., 40, 2255 (2001).
[13] 蔡明善, 博士論文, 國立成功大學, (1999)
[14] A. J. de White, Am. J. Phys., 35, 301 (1967).
[15] J. -Y. Kim, C. -H. Cho, P. Palffy-Muhoray, M. Mustafa and T. Kyu, Phys. Rev. Lett., 71, 2232 (1993).
[16] D. -K Yang, L. -C. Chien and J. W. Doane, Appl. Phys, Lett., 60, 3102 (1992).
[17] D. -K. Yang, L. -C. Chien and J. W. Doane, SID 1991 Int. Symp. Dig. 49 (1991).
[18] D. -K. Yang, L. -C. Chien and J. W. Doane, SID 1992 Int. Symp. Dig. 759 (1992).
[19] Andy Ying-Guey Fuh, Chi-Yen Huang, Ming-Shann Tsai, Jian-Ming Chen and Liang-Chy Chien, Jpn. J. Appl. Phys., 35, 630 (1996).
[20] Iam-Choon Khoo, Liquid Crystals--Physical Properties and Nonlinear Optical Phenomena, John Wiley & Sons Press, New York (1995).
[21] Birendra Bahadur, Liquid Crystals -- Applications and Uses, Vol. 1, World Scientific Press, Singapore (1990).
[22] Grant R. Fowles, Introduction to Modern Optics, 2nd ed., Holt, Rinehart and Winston Press, New York (1975).
[23] Eugene Hecht, Optics, 2nd ed., Addison-Wesley Press, Reading, Mass. (1987).
[24] D. -K. Yang and J. W. Doane, Appl. Phys. Lett. 64, 1905 (1994).
[25] A. Y. -G. Fuh, C. -Y. Huang, C. -R. Sheu, G. -L. Lin and M. -S. Tsai, Jpn. J. Appl. Phys., 33, L870 (1994).
[26] S. -J. Chang, C. -M. Lin, A. Y. -G. Fuh, Liq. Cryst., 21, 19 (1996).
[27] A. Y. -G. Fuh, C. -Y. Huang, M. -S. Tsai and G. -L. Lin, Chin. J. Phys. (Taipei), 33, 291 (1995).
[28] J. L. West, Mol. Cryst. Liq. Cryst., 157, 427 (1988).